+79268855999
(Viber, WhatsApp, Telegram)

Скорость хеширования. Хэш в секунду что это


В чем разница между kH / s, MH / s и GH / s?

Горная способность измеряется количеством попыток найти блок, который может выполнить шахтер. Каждая попытка состоит в создании уникального кандидата блока и создании дайджеста кандидата блока с помощью SHA-256d , криптографической хэш-функции. Или, короче говоря, хэш . Поскольку это непрерывное усилие, мы говорим о хешах в секунду или [H / S] .

Денежные индексы хеш

  • 1 кН / с - 1000 (одна тысяча) хешей в секунду
  • 1 МЗ / с - 1 000 000 (один миллион) хешей в секунду.
  • 1 GH / s - 1 000 000 000 (один миллиард) хешей в секунду.
  • 1 TH / s - 1 000 000 000 000 (один триллион) хешей в секунду.
  • 1 PH / s - 1 000 000 000 000 000 (один квадриллион) хешей в секунду.
  • 1 EH / s - 1 000 000 000 000 000 000 (один квинтиллион) хешей в секунду.

Конверсии

  • 1 МН / с = 1000 кН / с
  • 1 ГВ / с = 1000 МЗ / с = 1 000 000 кН / с
  • 1 TH / s = 1000 GH / s = 1,000,000 MH / с = 1,000,000,000 kH / s
  • и так далее

Приставки SI

Величина хеш-ставок соответствует Международной системе единиц (СИ) . Таким образом, префиксы кило-, мега-, гига-, тера-, пета-, экс-, каждый переводят на увеличение в 1000 раз.

Обратите внимание, что символ для килограмма - это нижний регистр «k». Поскольку «K» является символом кельвина , единицей термодинамической температуры.

Следующая таблица из Википедии показывает обзор префиксов, символов и факторов, которым они соответствуют.

Непоследовательность в килобайтах, мегабайтах и ​​гигабайтах

Использование компьютерной техники в килобайтах, мегабайтах и ​​гигабайте несовместимо с СИ. Объединенный совет инженеров по электронным устройствам (JEDEC) переопределил префиксы в кило-, мега- и гигабайтной переписке с битом и байтом с мощностью 1024 вместо 1000. Более высокие префиксы не были переопределены JEDEC.

Во избежание этой несогласованности Международная электротехническая комиссия (МЭК) предложила бинарный префикс, который использует киби [Ki], mebi [Mi] и gibi [Gi] для 1024¹, 1024² и 1024³ соответственно.

Следующая таблица из Википедии дает обзор.

askentire.net

Подскажите пожалуйста, что такое "хеширование" ?

Офигет, знаток, блин. Хеширование, это система шифрования паролей с получением контрольной суммы (хеша). В дальнейшем при проверке пароля, идет сверка не с самим паролем а хеш-суммы введенного пароля и хеш-суммы заданного.

Хеширование (англ. Collision-Resistant Hash Functions) — преобразование входного массива данных произвольной длины в выходную битовую строку фиксированной длины таким образом, чтобы изменение входных данных приводило к непредсказуемому изменению выходных данных. Такие преобразования также называются хеш-функциями или функциями свёртки, а их результаты называют хешем, хеш-кодом или дайджестом сообщения (англ. message digest). В общем случае это применение можно описать, как проверка некоторой информации на идентичность оригиналу, без использования оригинала. Для сверки используется хеш-значение проверяемой информации. Различают два основных направления этого применения: Проверка на наличие ошибок Например, контрольная сумма может быть передана по каналу связи вместе с основным текстом. На приёмном конце, контрольная сумма может быть рассчитана заново и её можно сравнить с переданным значением. Если будет обнаружено расхождение, то это значит, что при передаче возникли искажения и можно запросить повтор. Бытовым аналогом хеширования в данном случае может служить приём, когда при переездах в памяти держат количество мест багажа. Тогда для проверки не нужно вспоминать про каждый чемодан, а достаточно их посчитать. Совпадение будет означать, что ни один чемодан не потерян. То есть, количество мест багажа является его хеш-кодом. Проверка парольной фразы В большинстве случаев парольные фразы не хранятся на целевых объектах, хранятся лишь их хеш-значения. Хранить парольные фразы нецелесообразно, т.к. в случае несанкционированного доступа к файлу с фразами злоумышленник узнает все парольные фразы и сразу сможет ими воспользоваться, а при хранении хеш-значений он узнает лишь хеш-значения, которые не обратимы в исходные данные, в данном случае в парольную фразу. В ходе процедуры аутентификации вычисляется хеш-значение введённой парольной фразы, и сравнивается с сохранённым. Бытовым примером в данном случае может служить ОС Windows XP. В ней хранятся лишь хеш-значения парольных фраз из учётных записей пользователей.

Хеширование — преобразование входного массива данных в короткое число фиксированной длины (которое называется хешем или хеш-кодом) таким образом, чтобы с одной стороны, это число было значительно короче исходных данных, а с другой стороны, с большой вероятностью однозначно им соответствовало. Преобразование выполняется при помощи хеш-функции. Ясно, что в общем случае однозначного соответствия между исходными данными и хеш-кодом быть не может. Обязательно будут возможны массивы данных, дающих одинаковые хеш-коды, но вероятность таких совпадений в каждой конкретной задаче должна быть сведена к минимуму выбором хеш-функции.<br><br>Простым примером хеширования может служить нахождение циклической контрольной суммы, когда берётся текст (или другие данные) и суммируются коды входящих в него символов, а затем отбрасываются все цифры, за исключением нескольких последних. Полученное число может являться примером хеш-кода исходного текста.<br><br>Кроме этого, существует много других способов хеширования, подходящих к различным задачам.<br><br>Среди множества существующих хеш-функций принято выделять криптографически стойкие, применяемые в криптографии.<br><br>В современной жизни часто применяется MD5-хэш. Его используют для шифрования паролей и дальнейшей проверки.<br>Например в ICQ, когда Вы вводите пароль, то программа обрабатывает его хэш-функцией, и передает на сервер авторизации, а сервер уже сравнивает полученный хэш с имеющимся в его базе. Так как многие хэш-функции являются необратимыми, т.е. на основании хэша получить данные нельзя, то такая авторизация считается достаточно безопасной.<br>Эта же функция применяется в сети EDonkey для проверки контрольных сумм файлов и отслеживания одинаковых файлов у разных пользователей. (В этом случае обрабатывается весь файл по-байтово, и строка с хэшем получается длинной, но много раз меньшей, чем сам файл).<br>Самой простой хэш функцией считается функция проверки четности (CRC), которая повсеместно используется при копировании файлов, а точнее при проверке идентичности исходного файла и его копии.

Хеширование (англ. Collision-Resistant Hash Functions) — преобразование входного массива данных произвольной длины в выходную битовую строку фиксированной длины таким образом, чтобы изменение входных данных приводило к непредсказуемому изменению выходных данных. Такие преобразования также называются хеш-функциями или функциями свёртки, а их результаты называют хешем, хеш-кодом или дайджестом сообщения (англ. message digest).<br><br>В общем случае однозначного соответствия между исходными данными и хеш-кодом быть не может. Существует множество массивов данных, дающих одинаковые хеш-коды (так называемые коллизии), и каждая хэш-функция должна оцениваться по стойкости к возникновению коллизий. В разных задачах выдвигаются различные требования с стойкости хэш-функций.<br><br>Простым примером хеширования может служить нахождение контрольной суммы сообщения: сумма кодов всех входящих в него символов, от которой берётся несколько последних цифр. Полученное число является примером хеш-кода исходного сообщения. Существует множество способов хеширования, подходящих к различным задачам.<br><br>Среди множества существующих хеш-функций принято выделять криптографически стойкие, применяемые в криптографии.<br><br>Криптографическая хеш-функция должна обеспечивать:<br><br>стойкость к коллизиям (два различных набора данных должны иметь различные результаты преобразования) <br>необратимость (невозможность вычислить исходные данные по результату преобразования) <br>Хеш-функции также используются в некоторых структурах данных — хеш-таблицаx и декартовых деревьях. Требования к хеш-функции в этом случае другие:<br><br>хорошая перемешиваемость данных <br>быстрый алгоритм вычисления<br>

Может Кэширование?))<br>Этот термин к разному относиться.Например Инет-кэширование:<br>Когда Вы просматриваете различные ресурсы, они могут быть сохранены (прокэшированы) на жестком диске (или proxy-сервере). В следующий раз, при обращении к тому же ресурсу для увеличения скорости загрузки странички, файлы, картинки и прочие прокэшированные ресурсы, будут загружаться с жесткого диска, а не с удаленного сервера. Это позволяет уменьшить время загрузки страниц и объем входящего трафика.

хэширование - это процесс получения уникального (чаще цифрового) идентификатора для объекта. Например, в вашем нике Alex можно каждую букву заменить на какую-то цифру, а можно сказать, что Alex = 1. Причем алгоритм, который говорит, что Alex = 1 и 1 = Alex должен быть уникален. То есть если видим "1" на "ответах", значит Alex и никто больше. делается такое присвоение идентификатора автоматически. это делается с помощью хэш-функции. то есть f("Alex") -&gt; "1" и есть хэш-функция (кодирование) . обратное хэширование -- восстановление исходного значения f2("1") -&gt; "Alex". применение хэширования как раз идет от уникальности полученного хэш-кода. Хотя бы потому, что он очень короткий

большой так------ой ХРЕН

touch.otvet.mail.ru

Скорость хеширования

В сети Bitcoin и большинстве других современных криптовалют единицей вычислительной мощности является хешрейт. Обрабатывая операции и формируя новые блоки транзакций вычислительная техника производит сложные математические расчеты за решение которых майнер получает определенное количество новых криптомонет. Вся информация о проведенных транзакциях записывается и хранится в истории, которая находится в общем доступе. Задача майнеров состоит в том, чтобы подобрать нужный хеш из всех возможных комбинаций. Этот хеш аналогичен секретному ключу и предоставляет доступ к осуществлению новых операций. Решив задачу майнеру единоразово выплачивается вознаграждение, размер которого строго регламентирован алгоритмом криптовалютной сети. После “закрытия” блока майнер переходит на вычисление нового блока. Как правило, подбором хеша занимается одновременно большое количество устройств, работающие в одном пуле, и как только одно из них находит хеш, то вознаграждение выплачивается пропорционально всей группе, после чего процесс начинается заново.

Если представить это математически, то это выглядит так - майнеры занимаются подбором хеша, в который входит часть предыдущего блока, общее количество хешей за последних несколько минут и произвольная цифра. Майнерам необходимо найти подходящее случайное число, перебирая все возможные варианты, до тех пор, пока не будет сгенерирован хеш, отвечающий требованиям системы.

Данный процесс напоминает принцип работы торрент-трекеров. Ни для кого не секрет, что они являются основой p2p-сети, которая дает возможность быстро и в неограниченном количестве загружать фильмы, музыку и программное обеспечение. Любой пользователь загрузив файл и оставшись на раздаче, предоставляет возможность другим участникам сети качать данную информацию, при этом растет его рейтинг, позволяющий в будущем снова скачать определенное количество гигабайт данных.

Майнинг производится на все более и более мощном оборудовании, что приводит к повышению сложности добычи новых монет. В первые годы существования биткоина, любой желающий мог добыть криптовалюту на собственном домашнем компьютере, в то время майнеры для добычи биткоина использовали мощные видеокарты. Однако в определенный момент сложность настолько возросла, что на обычном компьютере добывать btc стало невозможно и для этих целей разработали специальные устройства - ASIC-майнеры, которые обладают высокой скоростью хеширования при незначительных затратах на электроэнергию.

Как узнать скорость хеширования

Нет единых информационных таблиц, в которых указывалась бы мощность того или иного оборудования, а все из-за того, что на скорость хеширования (хешрейт) влияют различные факторы. Вот основные их них:

  •         Производитель оборудования. При абсолютно одинаковых технических характеристиках, устройства от различных производителей будут выдавать различный хешрейт.
  •         Слот, через который майнер или видеокарта подключены к материнской плате. Бывают случаи, что подключая устройство в разные слоты - скорость хеширования кардинально отличалась.
  •         Алгоритм. Оборудование по-разному работает на каждом из используемых алгоритмов. Например, если вычислять на Scrypt-алгоритме, то скорость хеширования будет одна, а если оборудование будет производить вычисления используя SHA, то хешрейт будет совсем другой.

Начинающие майнеры должны помнить, что определенный тип оборудования, несмотря на высокие показатели производительности, может вообще не работать с определенными криптовалютами.

Производители техники всегда указывают на своей продукции заявленную мощность, но не следует полностью доверять этим цифрам, ведь даже модели, которые сходят с одного конвейера, выдают разную скорость хеширования. Оптимальным вариантом для того, чтобы вычислить хешрейт, является вычисление средней скорости хеширования за определенный отрезок времени на работающем оборудовании.

Заключение

Скорость хеширования - ключевой показатель, который влияет на быстроту производимых вычислений, а следовательно увеличивает прибыль майнера. Однако данный показатель в майнинге зависит от множества различных внешних факторов, поэтому приобретая оборудование нельзя точно знать какая у него мощность и следовательно, какой доход будет приносить техника. Многие майнеры предпочитают не связываться с тонкой настройкой устройства, а обратиться для этого к специалистам сервисов, предоставляющих услуги облачного майнинга. Заключая с компанией договор, майнер арендует у нее определенную мощность и на скорость хешрейта в таком случае уже ничего не сможет повлиять.

Будьте в курсе всех важных событий United Traders — подписывайтесь на наш телеграм-канал

utmagazine.ru

Что такое хеш и хэширование простыми словами.

Сегодня у нас на очереди хеш. Что это такое? Зачем он нужен? Почему это слово так часто используется в интернете применительно к совершенно разным вещам? Имеет ли это какое-то отношение к хештегам или хешссылкам? Где применяют хэш, как вы сами можете его использовать? Что такое хэш-функция и хеш-сумма? Причем тут коллизии?

">

Все это (или почти все) вы узнаете из этой маленькой заметки. Поехали...

Что такое хеш и хэширование простыми словами

Слово хеш происходит от английского «hash», одно из значений которого трактуется как путаница или мешанина. Собственно, это довольно полно описывает реальное значение этого термина. Часто еще про такой процесс говорят «хеширование», что опять же является производным от английского hashing (рубить, крошить, спутывать и т.п.).

Появился этот термин в середине прошлого века среди людей занимающихся обработках массивов данных. Хеш-функция позволяла привести любой массив данных к числу заданной длины. Например, если любое число (любой длинны) начать делить много раз подряд на одно и то же простое число, то полученный в результате остаток от деления можно будет называть хешем. Для разных исходных чисел остаток от деления (цифры после запятой) будет отличаться.

Для обычного человека это кажется белибердой, но как ни странно в наше время без хеширования практически невозможна работа в интернете. Так что же это такая за функция? На самом деле она может быть любой (приведенный выше пример это не есть реальная функция — он придуман мною чисто для вашего лучшего понимания принципа). Главное, чтобы результаты ее работы удовлетворяли приведенным ниже условиям.

Зачем нужен хэш

Смотрите, еще пример. Есть у вас текст в файле. Но на самом деле это ведь не текст, а массив цифровых символов (по сути число). Как вы знаете, в компьютерной логике используются двоичные числа (ноль и единица). Они запросто могут быть преобразованы в шестнадцатиричные цифры, над которыми можно проводить математические операции. Применив к ним хеш-функцию мы получим на выходе (после ряда итераций) число заданной длины (хеш-сумму).

Если мы потом в исходном текстовом файле поменяем хотя бы одну букву или добавим лишний пробел, то повторно рассчитанный для него хэш уже будет отличаться от изначального (вообще другое число будет). Доходит, зачем все это нужно? Ну, конечно же, для того, чтобы понять, что файл именно тот, что и должен быть. Это можно использовать в целом ряде аспектов работы в интернете и без этого вообще сложно представить себе работу сети.

Где и как используют хеширование

Например, простые хэш-функции (не надежные, но быстро рассчитываемые) применяются при проверке целостности передачи пакетов по протоколу TCP/IP (и ряду других протоколов и алгоритмов, для выявления аппаратных ошибок и сбоев — так называемое избыточное кодирование). Если рассчитанное значение хеша совпадает с отправленным вместе с пакетом (так называемой контрольной суммой), то значит потерь по пути не было (можно переходить к следующему пакету).

А это, ведь на минутку, основной протокол передачи данных в сети интернет. Без него никуда. Да, есть вероятность, что произойдет накладка — их называют коллизиями. Ведь для разных изначальных данных может получиться один и тот же хеш. Чем проще используется функция, тем выше такая вероятность. Но тут нужно просто выбирать между тем, что важнее в данный момент — надежность идентификации или скорость работы. В случае TCP/IP важна именно скорость. Но есть и другие области, где важнее именно надежность.

Похожая схема используется и в технологии блокчейн, где хеш выступает гарантией целостности цепочки транзакций (платежей) и защищает ее от несанкционированных изменений. Благодаря ему и распределенным вычислениям взломать блокчен очень сложно и на его основе благополучно существует множество криптовалют, включая самую популярную из них — это биткоин. Последний существует уже с 2009 год и до сих пор не был взломан.

Более сложные хеш-функции используются в криптографии. Главное условие для них — невозможность по конечному результату (хэшу) вычислить начальный (массив данных, который обработали данной хеш-функцией). Второе главное условие — стойкость к коллизиями, т.е. низкая вероятность получения двух одинаковых хеш-сумм из двух разных массивов данных при обработке их этой функцией. Расчеты по таким алгоритмам более сложные, но тут уже главное не скорость, а надежность.

Так же хеширование используется в технологии электронной цифровой подписи. С помощью хэша тут опять же удостоверяются, что подписывают именно тот документ, что требуется. Именно он (хеш) передается в токен, который и формирует электронную цифровую подпись. Но об этом, я надеюсь, еще будет отдельная статья, ибо тема интересная, но в двух абзацах ее не раскроешь.

Для доступа к сайтам и серверам по логину и паролю тоже часто используют хеширование. Согласитесь, что хранить пароли в открытом виде (для их сверки с вводимыми пользователями) довольно ненадежно (могут их похитить). Поэтому хранят хеши всех паролей. Пользователь вводит символы своего пароля, мгновенно рассчитывается его хеш-сумма и сверяется с тем, что есть в базе. Надежно и очень просто. Обычно для такого типа хеширования используют сложные функции с очень высокой криптостойкостью, чтобы по хэшу нельзя было бы восстановить пароль.

Какими свойствами должна обладать хеш-функция

Хочу систематизировать кое-что из уже сказанного и добавить новое.

  1. Как уже было сказано, функция эта должна уметь приводить любой объем данных (а все они цифровые, т.е. двоичные, как вы понимаете) к числу заданной длины (по сути это сжатие до битовой последовательности заданной длины хитрым способом).
  2. При этом малейшее изменение (хоть на один бит) входных данных должно приводить к полному изменению хеша.
  3. Она должна быть стойкой в обратной операции, т.е. вероятность восстановления исходных данных по хешу должна быть весьма низкой (хотя последнее сильно зависит от задействованных мощностей)
  4. В идеале она должна иметь как можно более низкую вероятность возникновения коллизий. Согласитесь, что не айс будет, если из разных массивов данных будут часто получаться одни и те же значения хэша.
  5. Хорошая хеш-функция не должна сильно нагружать железо при своем исполнении. От этого сильно зависит скорость работы системы на ней построенной. Как я уже говорил выше, всегда имеется компромисс между скорость работы и качеством получаемого результата.
  6. Алгоритм работы функции должен быть открытым, чтобы любой желающий мог бы оценить ее криптостойкость, т.е. вероятность восстановления начальных данных по выдаваемому хешу.

Хеш — это маркер целостности скачанных в сети файлов

Где еще можно встретить применение этой технологии? Наверняка при скачивании файлов из интернета вы сталкивались с тем, что там приводят некоторые числа (которые называют либо хешем, либо контрольными суммами) типа:

CRC32: 7438E546MD5: DE3BAC46D80E77ADCE8E379F682332EBSHA-1: 332B317FB97126B0F79F7AF5786EBC51E5CC82CF

Что это такое? И что вам с этим всем делать? Ну, как правило, на тех же сайтах можно найти пояснения по этому поводу, но я не буду вас утруждать и расскажу в двух словах. Это как раз и есть результаты работы различных хеш-функций (их названия приведены перед числами: CRC32, MD5 и SHA-1).

Зачем они вам нужны? Ну, если вам важно знать, что при скачивании все прошло нормально и ваша копия полностью соответствует оригиналу, то нужно будет поставить на свой компьютер программку, которая умеет вычислять хэш по этим алгоритмам (или хотя бы по некоторым их них).

После чего прогнать скачанные файлы через эту программку и сравнить полученные числа с приведенными на сайте. Если совпадают, то сбоев при скачивании не было, а если нет, то значит были сбои и есть смысл повторить закачку заново.

Популярные хэш-алгоритмы сжатия
  1. CRC32 — используется именно для создания контрольных сумм (так называемое избыточное кодирование). Данная функция не является криптографической. Есть много вариаций этого алгоритма (число после CRC означает длину получаемого хеша в битах), в зависимости от нужной длины получаемого хеша. Функция очень простая и нересурсоемкая. В связи с этим используется для проверки целостности пакетов в различных протоколах передачи данных.
  2. MD5 — старая, но до сих пор очень популярная версия уже криптографического алгоритма, которая создает хеш длиной в 128 бит. Хотя стойкость этой версии на сегодняшний день и не очень высока, она все равно часто используется как еще один вариант контрольной суммы, например, при скачивании файлов из сети.
  3. SHA-1 — криптографическая функция формирующая хеш-суммы длиной в 160 байт. Сейчас идет активная миграция в сторону SHA-2, которая обладает более высокой устойчивостью, но SHA-1 по-прежнему активно используется хотя бы в качестве контрольных сумм. Но она так же по-прежнему используется и для хранения хешей паролей в базе данных сайта (об этом читайте выше).
  4. ГОСТ Р 34.11-2012 — текущий российский криптографический (стойкий к взлому) алгоритм введенный в работу в 2013 году (ранее использовался ГОСТ Р 34.11-94). Длина выходного хеша может быть 256 или 512 бит. Обладает высокой криптостойкостью и довольно хорошей скоростью работы. Используется для электронных цифровых подписей в системе государственного и другого документооборота.
HashTab — вычисление хеша для любых файлов на компьютере

Раз уж зашла речь о программе для проверки целостности файлов (расчета контрольных сумм по разным алгоритмам хеширования), то тут, наверное, самым популярным решением будет HashTab.

Она бесплатна для личного некоммерческого использования и покрывает с лихвой все, что вам может понадобиться от подобного рода софта. После ее скачивания и установки запускать ничего не надо. Просто кликаете правой кнопкой мыши по нужному файлу в Проводнике (или ТоталКомандере) и выбираете самый нижний пункт выпадающего меню «Свойства»:

В открывшемся окне перейдите на вкладку «Хеш-суммы файлов», где будут отображены контрольные суммы, рассчитанные по нужным вам алгоритмам хэширования (задать их можно нажав на кнопку «Настройки» в этом же окне). По умолчанию отображаются три самых популярных:

Чтобы не сравнивать контрольные суммы визуально, можно числа по очереди вставить в рассположенное ниже поле (со знаком решетки) и нажать на кнопку «Сравнить файл».

Как видите, все очень просто и быстро. А главное эффективно.

spayte.livejournal.com

Биткойн: Что означает хэш / второе?

Вычислительные прообразы (nonces), которые удовлетворяют хеш-выходному значению с известным свойством (минимальное количество префиксных нулей), являются основой для разработки бит-монеты и проверки блочной цепочки. С этой целью все доступные аппаратные средства, будь то ПК и серверы общего назначения или пользовательские ASIC, специально предназначенные для разработки биткойнов, рассчитаны на производительность с точки зрения «Хеши / сек, мега-хеши / сек или гига-хаши / сек».

Без указания длины данных, которые хэшируются, я считаю, что этот рейтинг HW в терминах «Хеши / Сек» будет в лучшем случае расплывчатым. Все алгоритмы хеширования вводят сообщения произвольной длины и вычисляют дайджест сообщения фиксированной длины. Таким образом, вычислительная мощность, которая выполняет «миллионы хэшей в секунду» по входным блокам длиной 100 байт, не совсем такая же, как у другой HW, которая может выполнять «миллионы хэшей в секунду» с входными блоками, где длина блока составляет 4 килобайта.

Вопросов:

  1. Что значит сказать: «мой HW может выполнять х хэша / сек»? Используется ли каждый хэш для размера блока алгоритма SHA256, который равен 512 бит?

  2. Или хэш ссылается на хеширование цепочки блоков, чья длина сильно варьируется в зависимости от транзакций, которые определяют цепочку блоков?

  3. Существует ли известная эталонная программа, которая может измерять «хеши / сек», поддерживаемые любой частью HW?

Не уточняя приведенные выше данные и публикуя контрольный ориентир, на который каждый может посмотреть, утверждения вендоров «Хеши / Сек» кажутся мне маркетинговой уловкой.

[Добавлено позже] У меня есть еще один вопрос о том, как выполняется поиск действительного пользователя nonce. Насколько я понимаю, поиск определяется тремя параметрами

(a) Заголовок блока (b) целевая строка (c) nonce

Репрезентативный псевдокод, который ищет nonce, может быть записан как:

while (hash_256 (hash_256 (block_header, nonce)> = target_string) делает

nonce = nonce + 1

end_while

Я смоделировал вышеупомянутый псевдокод из этого блога Кен Шриф. Неясно, как этот код моделирует параметр «трудность». Выше цикл (а также тот, который найден в блоге ) повторяется через все значения nonce от 0 до (2 ^ 32-1). Или, ровно 4 миллиарда итераций хэш-функции. Даже ПК с 12-летним процессором Pentium 4, который работает с частотой 1 МГц / сек (сравните сравнение аппаратных средств ), может взломать это через 4000 секунд или примерно через час. Пользовательские ASIC с производительностью GHashes / sec взломают его через секунду.

Какова коррекция, необходимая для отражения параметра «трудности» в этом псевдокоде? Имеет ли отношение размер nonce к сложности?

askentire.net

функция - это... Что такое Хэш-функция?

Хеширование (иногда хэширование, англ. hashing) — преобразование входного массива данных произвольной длины в выходную битовую строку фиксированной длины. Такие преобразования также называются хеш-функциями или функциями свёртки, а их результаты называют хешем, хеш-кодом или дайджестом сообщения (англ. message digest).

Существует множество алгоритмов хеширования с различными характеристиками (разрядность, вычислительная сложность, криптостойкость и т. п.). Выбор той или иной хеш-функции определяется спецификой решаемой задачи. Простейшими примерами хеш-функций могут служить контрольная сумма или CRC.

В общем случае однозначного соответствия между исходными данными и хеш-кодом нет. Поэтому существует множество массивов данных, дающих одинаковые хеш-коды — так называемые коллизии. Вероятность возникновения коллизий играет немаловажную роль в оценке «качества» хеш-функций.

Контрольные суммы

Несложные, крайне быстрые и легко реализуемые аппаратно алгоритмы, используемые для защиты от непреднамеренных искажений, в том числе ошибок аппаратуры.

По скорости вычисления в десятки и сотни раз быстрее, чем криптографические хеш-функции, и значительно проще в аппаратной реализации.

Платой за столь высокую скорость является отсутствие криптостойкости — легкая возможность подогнать сообщение под заранее известную сумму. Также обычно разрядность контрольных сумм (типичное число: 32 бита) ниже, чем криптографических хешей (типичные числа: 128, 160 и 256 бит), что означает возможность возникновения непреднамеренных коллизий.

Простейшим случаем такого алгоритма является деление сообщения на 32- или 16- битные слова и их суммирование, что применяется, например, в TCP/IP.

Как правило, к такому алгоритму предъявляются требования отслеживания типичных аппаратных ошибок, таких, как несколько подряд идущих ошибочных бит до заданной длины. Семейство алгоритмов т. н. «циклический избыточных кодов» удовлетворяет этим требованиям. К ним относится, например, CRC32, применяемый в аппаратуре ZIP.

Криптографические хеш-функции

Среди множества существующих хеш-функций принято выделять криптографически стойкие, применяемые в криптографии. Криптостойкая хеш-функция прежде всего должна обладать стойкостью к коллизиям двух типов:

  • Стойкость к коллизиям первого рода: для заданного сообщения должно быть практически невозможно подобрать другое сообщение , имеющее такой же хеш. Это свойство также называется необратимостью хеш-функции.
  • Стойкость к коллизиям второго рода: должно быть практически невозможно подобрать пару сообщений , имеющих одинаковый хеш.

Согласно парадоксу о днях рождения, нахождение коллизии для хеш-функции с длиной значений n бит требует в среднем перебора около 2n / 2 операций. Поэтому n-битная хеш-функция считается криптостойкой, если вычислительная сложность нахождения коллизий для нее близка к 2n / 2.

Простейшим (хотя и не всегда приемлемым) способом усложнения поиска коллизий является увеличение разрядности хеша, например, путем параллельного использования двух или более различных хеш-функций.

Для криптографических хеш-функций также важно, чтобы при малейшем изменении аргумента значение функции сильно изменялось. В частности, значение хеша не должно давать утечки информации даже об отдельных битах аргумента. Это требование является залогом криптостойкости алгоритмов шифрования, хеширующих пользовательский пароль для получения ключа.

Применение хеширования

Хеш-функции также используются в некоторых структурах данных — хеш-таблицаx и декартовых деревьях. Требования к хеш-функции в этом случае другие:

  • хорошая перемешиваемость данных
  • быстрый алгоритм вычисления

Сверка данных

В общем случае это применение можно описать, как проверка некоторой информации на идентичность оригиналу, без использования оригинала. Для сверки используется хеш-значение проверяемой информации. Различают два основных направления этого применения:

Проверка на наличие ошибок

Например, контрольная сумма может быть передана по каналу связи вместе с основным текстом. На приёмном конце, контрольная сумма может быть рассчитана заново и её можно сравнить с переданным значением. Если будет обнаружено расхождение, то это значит, что при передаче возникли искажения и можно запросить повтор.

Бытовым аналогом хеширования в данном случае может служить приём, когда при переездах в памяти держат количество мест багажа. Тогда для проверки не нужно вспоминать про каждый чемодан, а достаточно их посчитать. Совпадение будет означать, что ни один чемодан не потерян. То есть, количество мест багажа является его хеш-кодом.

Проверка парольной фразы

В большинстве случаев парольные фразы не хранятся на целевых объектах, хранятся лишь их хеш-значения. Хранить парольные фразы нецелесообразно, так как в случае несанкционированного доступа к файлу с фразами злоумышленник узнает все парольные фразы и сразу сможет ими воспользоваться, а при хранении хеш-значений он узнает лишь хеш-значения, которые не обратимы в исходные данные, в данном случае в парольную фразу. В ходе процедуры аутентификации вычисляется хеш-значение введённой парольной фразы, и сравнивается с сохранённым.

Примером в данном случае могут служить ОС GNU/Linux и Microsoft Windows XP. В них хранятся лишь хеш-значения парольных фраз из учётных записей пользователей.

Ускорение поиска данных

Например, при записи текстовых полей в базе данных может рассчитываться их хеш код и данные могут помещаться в раздел, соответствующий этому хеш-коду. Тогда при поиске данных надо будет сначала вычислить хеш-код текста и сразу станет известно, в каком разделе их надо искать, то есть, искать надо будет не по всей базе, а только по одному её разделу (это сильно ускоряет поиск).

Бытовым аналогом хеширования в данном случае может служить помещение слов в словаре по алфавиту. Первая буква слова является его хеш-кодом, и при поиске мы просматриваем не весь словарь, а только нужную букву.

Список алгоритмов

Ссылки

Wikimedia Foundation. 2010.

dvc.academic.ru

Что такое Хэширование? Под капотом блокчейна / Хабр

Очень многие из вас, наверное, уже слышали о технологии блокчейн, однако важно знать о принципе работы хэширования в этой системе. Технология Блокчейн является одним из самых инновационных открытий прошлого века. Мы можем так заявить без преувеличения, так как наблюдаем за влиянием, которое оно оказало на протяжении последних нескольких лет, и влиянием, которое оно будет иметь в будущем. Для того чтобы понять устройство и предназначение самой технологии блокчейн, сначала мы должны понять один из основных принципов создания блокчейна.

Так что же такое хэширование?

Простыми словами, хэширование означает ввод информации любой длины и размера в исходной строке и выдачу результата фиксированной длины заданной алгоритмом функции хэширования. В контексте криптовалют, таких как Биткоин, транзакции после хэширования на выходе выглядят как набор символов определённой алгоритмом длины (Биткоин использует SHA-256).

Input- вводимые данные, hash- хэш

Посмотрим, как работает процесс хэширования. Мы собираемся внести определенные данные. Для этого, мы будем использовать SHA-256 (безопасный алгоритм хэширования из семейства SHA-2, размером 256 бит).

Как видите, в случае SHA-256, независимо от того, насколько объёмные ваши вводимые данные (input), вывод всегда будет иметь фиксированную 256-битную длину. Это крайне необходимо, когда вы имеете дело с огромным количеством данных и транзакций. Таким образом, вместо того, чтобы помнить вводимые данные, которые могут быть огромными, вы можете просто запомнить хэш и отслеживать его. Прежде чем продолжать, необходимо познакомиться с различными свойствами функций хэширования и тем, как они реализуются в блокчейн.

Криптографические хэш-функции
Криптографическая хэш-функция — это специальный класс хэш-функций, который имеет различные свойства, необходимые для криптографии. Существуют определенные свойства, которые должна иметь криптографическая хэш-функция, чтобы считаться безопасной. Давайте разберемся с ними по очереди.

Свойство 1: Детерминированние Это означает, что независимо от того, сколько раз вы анализируете определенный вход через хэш-функцию, вы всегда получите тот же результат. Это важно, потому что если вы будете получать разные хэши каждый раз, будет невозможно отслеживать ввод.

Свойство 2: Быстрое вычисление Хэш-функция должна быть способна быстро возвращать хэш-вход. Если процесс не достаточно быстрый, система просто не будет эффективна.

Свойство 3: Сложность обратного вычисления Сложность обратного вычисления означает, что с учетом H (A) невозможно определить A, где A – вводимые данные и H(А) – хэш. Обратите внимание на использование слова “невозможно” вместо слова “неосуществимо”. Мы уже знаем, что определить исходные данные по их хэш-значению можно. Возьмем пример.

Предположим, вы играете в кости, а итоговое число — это хэш числа, которое появляется из кости. Как вы сможете определить, что такое исходный номер? Просто все, что вам нужно сделать, — это найти хэши всех чисел от 1 до 6 и сравнить. Поскольку хэш-функции детерминированы, хэш конкретного номера всегда будет одним и тем же, поэтому вы можете просто сравнить хэши и узнать исходный номер.

Но это работает только тогда, когда данный объем данных очень мал. Что происходит, когда у вас есть огромный объем данных? Предположим, вы имеете дело с 128-битным хэшем. Единственный метод, с помощью которого вы должны найти исходные данные, — это метод «грубой силы». Метод «грубой силы» означает, что вам нужно выбрать случайный ввод, хэшировать его, а затем сравнить результат с исследуемым хэшем и повторить, пока не найдете совпадение.

Итак, что произойдет, если вы используете этот метод?

  • Лучший сценарий: вы получаете свой ответ при первой же попытке. Вы действительно должны быть самым счастливым человеком в мире, чтобы это произошло. Вероятность такого события ничтожна.
  • Худший сценарий: вы получаете ответ после 2 ^ 128 — 1 раз. Это означает, что вы найдете свой ответ в конце всех вычислений данных (один шанс из 340282366920938463463374607431768211456)
  • Средний сценарий: вы найдете его где-то посередине, поэтому в основном после 2 ^ 128/2 = 2 ^ 127 попыток. Иными словами, это огромное количество.
Таким образом, можно пробить функцию обратного вычисления с помощью метода «грубой силы», но потребуется очень много времени и вычислительных ресурсов, поэтому это бесполезно.

Свойство 4: Небольшие изменения в вводимых данных изменяют хэш Даже если вы внесете небольшие изменения в исходные данные, изменения, которые будут отражены в хэше, будут огромными. Давайте проверим с помощью SHA-256:

Видите? Даже если вы только что изменили регистр первой буквы, обратите внимание, насколько это повлияло на выходной хэш. Это необходимая функция, так как свойство хэширования приводит к одному из основных качеств блокчейна – его неизменности (подробнее об этом позже).

Свойство 5: Коллизионная устойчивость Учитывая два разных типа исходных данных A и B, где H (A) и H (B) являются их соответствующими хэшами, для H (A) не может быть равен H (B). Это означает, что, по большей части, каждый вход будет иметь свой собственный уникальный хэш. Почему мы сказали «по большей части»? Давайте поговорим об интересной концепции под названием «Парадокс дня рождения».

Что такое парадокс дня рождения? Если вы случайно встречаете незнакомца на улице, шанс, что у вас совпадут даты дней рождений, очень мал. Фактически, если предположить, что все дни года имеют такую же вероятность дня рождения, шансы другого человека, разделяющего ваш день рождения, составляют 1/365 или 0,27%. Другими словами, он действительно низкий.

Однако, к примеру, если собрать 20-30 человек в одной комнате, шансы двух людей, разделяющих тот же день, резко вырастает. На самом деле, шанс для 2 человек 50-50, разделяющих тот же день рождения при таком раскладе.

Как это применяется в хэшировании? Предположим, у вас есть 128-битный хэш, который имеет 2 ^ 128 различных вероятностей. Используя парадокс дня рождения, у вас есть 50% шанс разбить коллизионную устойчивость sqrt (2 ^ 128) = 2 ^ 64.

Как вы заметили, намного легче разрушить коллизионную устойчивость, нежели найти обратное вычисление хэша. Для этого обычно требуется много времени. Итак, если вы используете такую функцию, как SHA-256, можно с уверенностью предположить, что если H (A) = H (B), то A = B.

Свойство 6: Головоломка Свойства Головоломки имеет сильнейшее воздействие на темы касающиеся криптовалют (об этом позже, когда мы углубимся в крипто схемы). Сначала давайте определим свойство, после чего мы подробно рассмотрим каждый термин.

Для каждого выхода «Y», если k выбран из распределения с высокой мин-энтропией, невозможно найти вводные данные x такие, что H (k | x) = Y.

Вероятно, это, выше вашего понимания! Но все в порядке, давайте теперь разберемся с этим определением.

В чем смысл «высокой мин-энтропии»? Это означает, что распределение, из которого выбрано значение, рассредоточено так, что мы выбираем случайное значение, имеющее незначительную вероятность. В принципе, если вам сказали выбрать число от 1 до 5, это низкое распределение мин-энтропии. Однако, если бы вы выбрали число от 1 до бесконечности, это — высокое распределение мин-энтропии.

Что значит «к|х»? «|» обозначает конкатенацию. Конкатенация означает объединение двух строк. Например. Если бы я объединила «голубое» и «небо», то результатом было бы «голубоенебо». Итак, давайте вернемся к определению.

Предположим, у вас есть выходное значение «Y». Если вы выбираете случайное значение «К», невозможно найти значение X, такое, что хэш конкатенации из K и X, выдаст в результате Y.

Еще раз обратите внимание на слово «невозможно», но не исключено, потому что люди занимаются этим постоянно. На самом деле весь процесс майнинга работает на этом (подробнее позже).

Примеры криптографических хэш-функций:

  • MD 5: Он производит 128-битный хэш. Коллизионная устойчивость была взломана после ~2^21 хэша.
  • SHA 1: создает 160-битный хэш. Коллизионная устойчивость была взломана после ~2^61 хэша.
  • SHA 256: создает 256-битный хэш. В настоящее время используется в Биткоине.
  • Keccak-256: Создает 256-битный хэш и в настоящее время используется Эфириуме.
Хэширование и структуры данных. Структура данных — это специализированный способ хранения данных. Если вы хотите понять, как работает система «блокчейн», то есть два основных свойства структуры данных, которые могут помочь вам в этом:

1. Указатели 2. Связанные списки

Указатели В программировании указатели — это переменные, в которых хранится адрес другой переменной, независимо от используемого языка программирования.

Например, запись int a = 10 означает, что существует некая переменная «a», хранящая в себе целочисленное значение равное 10. Так выглядит стандартная переменная.

Однако, вместо сохранения значений, указатели хранят в себе адреса других переменных. Именно поэтому они и получили свое название, потому как буквально указывают на расположение других переменных.

Связанные списки Связанный список является одним из наиболее важных элементов в структурах данных. Структура связанного списка выглядит следующим образом:

*Head – заголовок; Data – данные; Pointer – указатель; Record – запись; Null – ноль

Это последовательность блоков, каждый из которых содержит данные, связанные со следующим с помощью указателя. Переменная указателя в данном случае содержит адрес следующего узла, благодаря чему выполняется соединение. Как показано на схеме, последний узел отмечен нулевым указателем, что означает, что он не имеет значения.

Важно отметить, что указатель внутри каждого блока содержит адрес предыдущего. Так формируется цепочка. Возникает вопрос, что это значит для первого блока в списке и где находится его указатель?

Первый блок называется «блоком генезиса», а его указатель находится в самой системе. Выглядит это следующим образом:

*H ( ) – Хэшированные указатели изображаются таким образом

Если вам интересно, что означает «хэш-указатель», то мы с радостью поясним. Как вы уже поняли, именно на этом основана структура блокчейна. Цепочка блоков представляет собой связанный список. Рассмотрим, как устроена структура блокчейна:

* Hash of previous block header – хэш предыдущего заголовка блока; Merkle Root – Корень Меркла; Transactions – транзакции; Simplified Bitcoin Blockchain – Упрощенный блокчейн Биткоина.

Блокчейн представляет собой связанный список, содержащий данные, а так же указатель хэширования, указывающий на предыдущий блок, создавая таким образов связную цепочку. Что такое хэш-указатель? Он похож на обычный указатель, но вместо того, чтобы просто содержать адрес предыдущего блока, он также содержит хэш данных, находящихся внутри предыдущего блока. Именно эта небольшая настройка делает блокчейн настолько надежным. Представим на секунду, что хакер атакует блок 3 и пытается изменить данные. Из-за свойств хэш-функций даже небольшое изменение в данных сильно изменит хэш. Это означает, что любые незначительные изменения, произведенные в блоке 3, изменят хэш, хранящийся в блоке 2, что, в свою очередь, изменит данные и хэш блока 2, а это приведет к изменениям в блоке 1 и так далее. Цепочка будет полностью изменена, а это невозможно. Но как же выглядит заголовок блока?

* Prev_Hash – предыдущий хэш; Tx – транзакция; Tx_Root – корень транзакции; Timestamp – временная отметка; Nonce – уникальный символ.

Заголовок блока состоит из следующих компонентов:

· Версия: номер версии блока · Время: текущая временная метка · Текущая сложная цель (См. ниже) · Хэш предыдущего блока · Уникальный символ (См. ниже) · Хэш корня Меркла

Прямо сейчас, давайте сосредоточимся на том, что из себя представляет хэш корня Меркла. Но до этого нам необходимо разобраться с понятием Дерева Меркла.

Что такое Дерево Меркла?
Источник: Wikipedia

На приведенной выше диаграмме показано, как выглядит дерево Меркла. В дереве Меркла каждый нелистовой узел является хэшем значений их дочерних узлов.

Листовой узел: Листовые узлы являются узлами в самом нижнем ярусе дерева. Поэтому, следуя приведенной выше схеме, листовыми будут считаться узлы L1, L2, L3 и L4.

Дочерние узлы: Для узла все узлы, находящиеся ниже его уровня и которые входят в него, являются его дочерними узлами. На диаграмме узлы с надписью «Hash 0-0» и «Hash 0-1» являются дочерними узлами узла с надписью «Hash 0».

Корневой узел: единственный узел, находящийся на самом высоком уровне, с надписью «Top Hash» является корневым.

Так какое же отношение Дерево Меркла имеет к блокчейну? Каждый блок содержит большое количество транзакций. Будет очень неэффективно хранить все данные внутри каждого блока в виде серии. Это сделает поиск какой-либо конкретной операции крайне громоздким и займет много времени. Но время, необходимое для выяснения, на принадлежность конкретной транзакции к этому блоку или нет, значительно сокращается, если Вы используете дерево Меркла.

Давайте посмотрим на пример на следующем Хэш-дереве:

Изображение предоставлено проектом: Coursera

Теперь предположим, я хочу узнать, принадлежат ли эти данные блоку или нет:

Вместо того, чтобы проходить через сложный процесс просматривания каждого отдельного процесса хэша, а также видеть принадлежит ли он данным или нет, я просто могу отследить след хэша, ведущий к данным:

Это значительно сокращает время.

Хэширование в майнинге: крипто-головоломки. Когда мы говорим «майнинг», в основном, это означает поиск нового блока, который будет добавлен в блокчейн. Майнеры всего мира постоянно работают над тем, чтобы убедиться, что цепочка продолжает расти. Раньше людям было проще работать, используя для майнинга лишь свои ноутбуки, но со временем они начали формировать «пулы», объединяя при этом мощность компьютеров и майнеров, что может стать проблемой. Существуют ограничения для каждой криптовалюты, например, для биткоина они составляют 21 миллион. Между созданием каждого блока должен быть определенный временной интервал заданный протоколом. Для биткоина время между созданием блока занимает всего 10 минут. Если бы блокам было разрешено создаваться быстрее, это привело бы к:

  • Большому количеству коллизий: будет создано больше хэш-функций, которые неизбежно вызовут больше коллизий.
  • Большому количеству брошенных блоков: Если много майнеров пойдут впереди протокола, они будут одновременно хаотично создавать новые блоки без сохранения целостности основной цепочки, что приведет к «осиротевшим» блокам.
Таким образом, чтобы ограничить создание блоков, устанавливается определенный уровень сложности. Майнинг чем-то напоминает игру: решаешь задачу – получаешь награду. Усиление сложности делает решение задачи намного сложнее и, следовательно, на нее затрачивается большее количество времени.WRT, которая начинается с множества нулей. При увеличении уровня сложности, увеличивается количество нулей. Уровень сложности изменяется после каждого 2016-го блока.
Процесс Майнинга
Примечание: в этом разделе мы будем говорить о выработке биткоинов. Когда протокол Биткоина хочет добавить новый блок в цепочку, майнинг – это процедура, которой он следует. Всякий раз, когда появляется новый блок, все их содержимое сначала хэшируется. Если подобранный хэш больше или равен, установленному протоколом уровню сложности, он добавляется в блокчейн, а все в сообществе признают новый блок.

Однако, это не так просто. Вам должно очень повезти, чтобы получить новый блок таким образом. Так как, именно здесь присваивается уникальный символ. Уникальный символ (nonce) — это одноразовый код, который объединен с хэшем блока. Затем эта строка вновь меняется и сравнивается с уровнем сложности. Если она соответствует уровню сложности, то случайный код изменяется. Это повторяется миллион раз до тех пор, пока требования не будут наконец выполнены. Когда же это происходит, то блок добавляется в цепочку блоков.

Подводя итоги:

• Выполняется хэш содержимого нового блока. • К хэшу добавляется nonce (специальный символ). • Новая строка снова хэшируется. • Конечный хэш сравнивается с уровнем сложности, чтобы проверить меньше он его или нет • Если нет, то nonce изменяется, и процесс повторяется снова. • Если да, то блок добавляется в цепочку, а общедоступная книга (блокчейн) обновляется и сообщает нодам о присоединении нового блока. • Майнеры, ответственные за данный процесс, награждаются биткоинами.

Помните номер свойства 6 хэш-функций? Удобство использования задачи? Для каждого выхода «Y», если k выбран из распределения с высокой мин-энтропией, невозможно найти вход x таким образом, H (k | x) = Y.

Так что, когда дело доходит до майнинга биткоинов:

• К = Уникальный символ • x = хэш блока • Y = цель проблемы

Весь процесс абсолютно случайный, основанный на генерации случайных чисел, следующий протоколу Proof Of Work и означающий:

  • Решение задач должно быть сложным.
  • Однако проверка ответа должна быть простой для всех. Это делается для того, чтобы убедиться, что для решения проблемы не использовались недозволенные методы.
Что такое скорость хэширования? Скорость хэширования в основном означает, насколько быстро эти операции хэширования происходят во время майнинга. Высокий уровень хэширования означает, что в процессе майнинга участвуют всё большее количество людей и майнеров, и в результате система функционирует нормально. Если скорость хэширования слишком высокая, уровень сложности пропорционально увеличивается. Если скорость хэша слишком медленная, то соответственно, уровень сложности уменьшается.
Вывод
Хэширование действительно является основополагающим в создании технологии блокчейн. Если кто-то хочет понять, что такое блокчейн, он должен начать с того, чтобы понять, что означает хэширование.

habr.com