+79268855999
(Viber, WhatsApp, Telegram)

Тест жидкостей для СВО. Жидкость диэлектрическая для охлаждения


Выбор составов для иммерсионного охлаждения для майнинга криптовалют

Новые возможности применения компьютеров, совершенствование чипов для сложных вычислений, механизмов и систем обработки цифрового кода, стремительными темпами внедряются в нашу жизнь.

Мы являемся свидетелями и участниками рождения новых отраслей использования компьютерной техники и майнинга криптовалют, бурного развития технологии вычислений Big-Data и технологии BlockChain. При этом многократно растет энергопотребление вовлеченной в эти процессы компьютерной мощности (ХЭШРЕЙТ), и задачи старой экономики – обеспечить электричеством новые потребности крипто-сообщества и вычислительных гигантов.

Энергоэффективность и сохранение экологии планеты – главный движущий мотив развития инновационных систем охлаждения суперкомпьютеров. Не на последнем месте также стоит и бизнес-интерес – чем лучше и эффективнее охлаждается процессор и плата, тем большую производительность она может обеспечить для вычислений, тем больше блоков и задач в итоге решит сервер, при меньшем энергопотреблении.

Не важно, говорим ли мы о нагреве графических видеопроцессоров (GPU), или чипов на хэш-платах, или блоках питания и преобразования энергии – применение иммерсионных (погружных) систем охлаждения несет в себе огромный потенциал для увеличения эффективности работы таких систем, и несомненные преимущества по сравнению с привычным воздушным охлаждением. К таковым преимуществам можно отнести:

  • Лучший, в сотни раз по сравнению с воздухом, теплообмен, соответственно, и более эффективное охлаждение.
  • Снижение электропотребления оборудования засчет меньшего нагрева.
  • Повышение хэш-рейта, т.е. производительности оборудования. Возможность увеличения производительности чипов за счет лучшего охлаждения.
  • 100% пожаробезопасность засчет исключения замыкания, самовозгорания. Применение диэлектрической среды для охлаждения, решает также задачу по борьбе со статическим электричеством на рабочих поверхностях чипа, которое может возникнуть при работе вентиляторов, и разнополярно заряженных пылевых частиц.
  • Повышение долговечности работы чипов. При «разгоне» чипа на максимальной частоте, рабочее тело кристалла плавится, деформируется, происходит диффузия, и срок службы чипа резко снижается: либо чип «вылетает» (иногда не только он один), либо вся хэш-плата. Использование более эффективной системы охлаждения многократно продлевает срок эксплуатации систем.
  • Решение проблемы сильного фонового шума. Невыносимый шум вентиляторов снижает до нуля популяцию мелких млекопитающих, насекомых, и паразитов в районе 100 м. от любой майнинг-фермы. Иммерсионная система дружелюбна к природе и к органам слуха человека.
  • Уменьшение затрат на обслуживание оборудования. В погружных системах платы не нуждаются в профилактике, очистке, продувке от пыли и грязи, и не теряют своего «товарного вида» и рабочих характеристик, пока нормально работает иммерсионный состав.

ПЕРЕЙДЕМ К ВЫБОРУ

Какую иммерсионную систему охлаждения выбрать начинающему или продвинутому майнеру? Универсального ответа нет, но попробуем разобраться.

Про воздушное охлаждение написано много трудов и материалов, в контексте этой статьи мы вообще не будем рассматривать его, как способ охладить чип. Это популярное ныне решение рано или поздно, ввиду его минусов, будет «растоптано» прогрессом и требованиями рынка, и канет в Лету вслед за патефоном, флоппи-диском, и лампам накаливания. ОНО ВООБЩЕ НЕ ОТНОСИТСЯ К ИММЕРСИОННЫМ СИСТЕМАМ ОХЛАЖДЕНИЯ.

Дистиллированная вода. Особенности и последствия такого выбора.

  1. Приобрести качественную дистиллированную воду не так уж просто. Как и многие продукты на отечественном рынке, она далека от нормативов. В большинстве случаев в дистиллированной воде, пусть в минимальных количествах, но присутствуют различные соли, другие химические примеси.
  2. Даже если вам удалось приобрести качественную дистиллированную воду, чтобы обеспечить сохранение ее чистоты нужно сохранить полную стерильность системы. А этого в домашних условиях достичь практически не возможно. Со временем она теряет свои свойства, в резервуарах происходит размножение бактерий и результат – появление осадка, цветения, загрязнение системы. Вода теряет свои качества, а вместе с ними и диэлектрическую проницаемость.
  3. Потери жидкости. И это не обязательно банальные утечки, но и совершенно неконтролируемые и не фиксируемые потери в узлах и “переходниках”кустарно собранных систем.
  4. В полностью герметичных системах, при нагревании жидкости увеличивается ее объем и, как следствие, растет давление. А это повышает риски выхода оборудования из строя и снижает безопасность работы оборудования.
  5. Главное преимущество дистиллированной воды –самая низкая стоимостьтеплоносителя среди всех кто будет входить в сравнение.
  6. Кипение воды происходит при температуре +100 градусов по Цельсию. Это означает, что практически весь рабочий диапазон температур чипа, вода как теплоноситель, остается в жидком агрегатном состоянии, что позволяет проектировать однофазную систему охлаждения, которая более доступна и в инженерном, и в коммерческом плане. Но не отменяет вышеозначенных минусов.

Вообще стоит отметить, что водяное охлаждение используется и сегодня крупными игроками на рынке охладительных систем. Например, это компания Aquilaи ее серверная система Aquarius с водяным охлаждением; проект Asetekс оригинальной версиейпрямоконтактных систем жидкостного охлаждения.

Минеральное масло. Недостатки и преимущества.

Большой опыт использования его в качестве теплоотводящей жидкости для механизмов в машиностроении и тяжелой промышленности (трансформаторы, высоковольтные выключатели) заставил и его послужить в качестве охладителя и в компьютерах. Очень много в сети выложено материалов, которые описывают противоречивый опыт погружного охлаждения в емкостях, наполненных маслом. Главное здесь – все правильно подключить с первого раза, и не производить потом ревизию блока, потому что делать это уже после вынимания из “масляного”аквариума (маслариума) под силу только самым терпеливым и нацеленным на положительный результат майнерам.

Какие же недостатки погружного масляного охлаждения?

  1. Во первых, это должны быть минеральные масла. В противном случае, достаточно быстро происходит окисление этого масла.
  2. В открытых системах, коими и являются используемые для масла емкости, при попадании в масло пылевых частиц из внешней среды происходит его загустевание.
  3. С минеральными маслами в емкости для охлаждения остается необходимость использования гидравлики и помп. А значит, энергозатраты у пользователя все равно сохраняются.
  4. При охлаждении высокотемпературных поверхностей открытая, негерметичная система всегда обнаруживает себя зловонным запахом горелого масла, который делает непригодным применение таких систем в жилых помещениях.
  5. Данные системы также основаны на однофазном принципе, что дешевле двухфазных систем, но, конвекция и теплообмен внутри маслариума происходит менее эффективно, чем в воде, засчет большей вязкости жидкости, т.е. перемешиваниенагретых объемов масла с охлажденной массой менее интенсивное, что не позволяет излишне плотно упаковывать хэш платы на материнской плате. И необходимо учесть при проектировании коридоры для лучшей конвекции тепловых потоков.

Тем не менее, и в наше время есть современные промышленные системы, которые используют в качестве иммерсионного агента минеральное масло. Например, Carnot Jet System от Green Revolution Cooling – универсальная система, которая совместима с большим количеством оборудования и устанавливается в стойки, заполненые маслом. Но конечно не тем, которые доступны рядовому пользователю, речь идет о специализированном составе.

Относительные преимущества:

  1. Не всегда, но часто, цена масел, которые предпочитают отечественные владельцы майнеров, может быть сравнительно доступной.
  2. Малая испаряемость, а значит, нет большой необходимости регулярно пополнять резервуар.

 

Сухая вода, Novec™ и Fluorinert™. Только лучшее для современного майнера. Третья каста – специально разработанные инженерные жидкости и инертные составы, огнетушащие вещества, которые успешно используются и для тушения возгораний различных классов опасности (ингибируют пламя, быстро и эффективно снижают температуру в очаге возгорания) и для охлаждения интенсивно работающего оборудования. В чем их преимущества?

  1. Снижение энергозатрат на 97%.
  2. Абсолютная пожарная и электрическая безопасность для оборудования.
  3. Десятикратное уменьшение размеров серверных стоек.
  4. Полная бесшумность работы системы охлаждения.
  5. Экологичность и безопасный токсикологический профиль.
  6. Срок гарантии от производителя таких инженерных жидкостей – 30 лет.

На рынке есть жидкости, которые предназначены как для однофазного (температура кипения начинается от 95 градусов, например, это жидкости Fluorinert FC-770, FC-3283, FC-40, FC-43, FC-70 и Novec 7300, 7500 и 7700) и двухфазного охлаждения (температура кипения не выше 76 градусов, например, это жидкости Fluorinert FC-3284 и FC-72, Novec 7000, 49, 7100, 7200 и 774).

Принципиальное различие конструктивасистем такого охлаждения состоит в том, что в первом случае – это системы в которых жидкость с помощьюгидравлики и помп перемешиваетсядля конвекции нагретого и холодного объема, а во втором –двухфазном охлаждении, происходит интенсивное кипение вещества, пары отбирают тепло от чипа, и в верхней части куба в результате охлаждения, переходят снова в жидкое состояние (Принцип самогонного аппарата или ректификационной колонны с дефлегматором). Постоянные переходы действующего иммерсионного вещества из жидкой в парообразную фазу и обратно, в непрерывном процессе теплообмена, дают наименьшие затраты энергии на работу такой системы, и наиэффективнейший способ охлаждения рабочих поверхностей хэш-платы. В обоих случаях это полностью герметичные системы, с компенсаторами давления и системами контроля физического состояния.

И те, и другие варианты рассчитаны под определенные требования, но в любом случае обладают всеми вышеперечисленными преимуществами.

Где применяются системы иммерсионного охлаждения с агентом Novec™ и Fluorinert™ и их аналогами? Центры обработки данных, высоковольтные системы, майнинг, облачная коммерциализация. Это не полный список.Что выбрать вам? Решение всегда принимается на основании всей информации. Мы вам постарались ее изложить. И это не последняя статья на эту тему.

Но эволюция – это всегда выход на качественно новый уровень. Давайте шагать вверх, а не топтаться на месте.

tradefed.ru

Тест жидкостей для СВО

Сравнение трех популярных жидкостей для СВО и дистиллированной воды

Тест жидкостей для СВО

Автор: Brett Thomas Источник: http://www.bit-tech.net/ Перевод: Александр Шаронов

Ни для кого не секрет, что водяное охлаждение отлично выглядит, к тому же по эффективности оно значительно превосходит воздушное. Но в то же время с использованием СВО связаны и большие риски. А что если система будет протекать? Как насчет коррозии?

Самый простой способ избавиться от этих опасностей – не использовать воду. Нет, это не значит выбросить СВО. Просто вместо воды взять другой хладагент. Хотя выбор и не так широк, на рынке можно найти несколько продуктов, которые лучше воды не только в аспекте безопасности, но и по массе других свойств.

Не токопроводящая жидкость – не вода. И каждая имеет как достоинства, так и недостатки. Они не испортят комплектующие при протечке, многие имеют специальные химические вещества, предотвращающие коррозию. Обратная сторона – за надежность надо платить.

Сегодня мы познакомимся с тремя лучшими жидкостями для охлаждения: FluidXP+ Ultra, MCT-40 и Feser One. Мы узнаем их сильные и слабые стороны, но для начала взглянем на них.

FluidXP+ Ultra

Почти все когда-то собиравшие СВО люди знакомы с продуктами компании FluidXP+. Она существует на рыке немногим более трех лет, но уже успела завоевать популярность и обрести круг поклонников. Первоначально компания занималась широким спектром услуг, но позже все внимание было сосредоточено на жидкостях для охлаждения.

FluidXP+ Ultra выпущена в начале текущего года. Как и предыдущие модели, она не проводит ток и препятствует возникновению коррозии в контурах с использованием нескольких различных металлов. Несколько случайных капель на материнскую плату или видеокарту не заставят вас лить слезы у разбитого компьютера.

Еще одним важным положительным свойством FluidXP+ Ultra является отсутствие токсичности. На самом деле жидкость сделана из пищевых материалов, что делает ее безопасной для детей и домашних животных.

Команда FluidXP+ с гордостью заявляет о своей высокотехнологичной спецификации z-7. В период повседневного использования СВО от фитингов, водоблоков и радиаторов неизбежно откалываются мельчайшие частицы металла. Этот процесс неизбежен. Технология z-7 позволяет прикрепить оторвавшиеся частицы обратно к металлическим стенкам. Хотя z-7 является скорее маркетинговым ходом, во главе команды ее создателей стоит бывший исследователь из космического агентства NASA, а он знает, что делает.

По вязкости FluidXP+ Ultra сравнима с легким маслом. В нашем случае жидкость имела насыщенный красный цвет.

MCT-40

Компания MCT, Midwest Cooling Technologies, была создана еще в 2004 году. Это название известно в довольно узких кругах компьютерных энтузиастов, ведь в большинстве стран продукция MCT продается только в комплекте с устройствами СВО Danger Den.

За 4 года существования компании продукция не подвергалась существенной модернизации. Сегодня можно купить два вида жидкостей для СВО: MCT-5 и MCT-40. Мы взяли MCT-40. Она поставляется в упаковке, очень похожей на канистру для моторного масла. Возникшую ассоциацию усиливает запах и цвет жидкости. Она пахнет, как антифриз, а внешне похожа на бензин.

Жидкость MCT-40 немного более густая, чем вода, но не настолько, чтобы затруднить прохождение через помпу. По предварительной оценке MCT-40 имеет склонность к образованию пузырей.

Feser One

Продажи Feser One стартовали в 2007 году. Еще несколько месяцев назад продукцию Feser One было очень трудно найти. Уже сегодня розничные сети активно ей торгуют.

Одним из самых очевидных плюсов Feser One является широкий выбор модификаций. И, прежде всего, это цветовая гамма. Можно подобрать почти любой цвет к вашему корпусу. К тому же некоторые модели имеют еще более интересную цветовую схему. Например, Black and UV Blue черный в обычном в состоянии и ярко-голубой при ультрафиолетовом свете.

По консистенции Feser One ближе всего к воде из всех рассмотренных образцов. На ощупь эта жидкость похожа на слабый алкоголь. Быстро исчезающие пузыри также относятся к положительным свойствам. Цена на Feser One намного ниже в сравнении с конкурентами.

Тесты проводились на специальном стенде, который включал следующие комплектующие:

  • Материнская плата: Gigabyte P35C-DS3R; Процессор: Intel Core 2 Quad Q6600 @ 2.4 ГГц; Оперативная память: OCZ FlexXLC PC-9600 DDR2 @ 1066 МГц; Видеокарта: OCZ GeForce 8800 GTX; Жесткий диск: Seagate 1 Тб 7200.11 SATA; Блок питания: OCZ 1000 Вт ProXStream.

Все частоты установлены на базовые значения, кроме специально отмеченного режима.

Система водяного охлаждения построена из такого оборудования:

  • Водоблок: Danger Den TDX CPU LGA775; Радиатор: BlackIce GTX 240 мм; Вентиляторы: 2 х 120 мм AC Ryan Blackfire 4 Kameleon; Помпа: Laing Vario D5 12 В; Трубки: 1/2" ID Clearflex.

Чтобы читатели смогли провести максимально приближенные к проведенным тестам испытания самостоятельно, более подробно рассмотрим методику оценки эффективности охлаждения.

Тестовая система построена в комнате с автоматическим контролем температуры и минимальным количеством перемещающихся людей. Для замера температуры процессора использовалась утилита Speedfan. Температура окружающей среды взята из показаний цифрового датчика, установленного на стене примерно в одном метре от компьютера.

После заполнения системы очередным хладагентом компьютер включали и оставляли в спокойном состоянии загруженную ОС Windows Vista на один час. После чего снимали показания температурных датчиков.

Для создания максимальной нагрузки на все процессорные ядра использовалась программа Prime95. Температура замерялась на 10, 20, 30, 60 и 90 минутах теста, после чего высчитывалась среднее значение. При этом за 20 минут теста температура ядер не изменялась более чем на 1 градус. После 90 минут Prime95 выключалась, и система возвращалась в спокойное состояние. На 10, 20 и 30 минуте показания датчиков снова записывали, пока за последние 10 минут не было фиксировано изменений в температуре.

После этого систему выключали, выливали жидкость, тщательно промывали дистиллированной водой минимум 3 раза, прока вода не становилась абсолютно чистой. Весь процесс повторялся дважды для каждой тестируемой жидкости. При этом ее брали из разных бутылок, чтобы увеличить достоверность и независимость тестов.

Настал момент, которого мы все ждали. Все жидкости протестированы, потрачены десятки часов, около 20 литров дистиллированной воды и 6 банок с хладагентами. Все это сделано для ответа на один простой вопрос: существует ли лучшая жидкость для охлаждения? Может ли что-нибудь выполнить работу воды лучше, чем сама вода? Цифры непреклонны: нет ничего лучше чистой дистиллированной воды. По меньшей мере, при экстремальной нагрузке.

Но некоторые жидкости показали очень близкие к воде результаты. Если учесть защиту от коррозии и свойства диэлектрика, то они могут стать отличной альтернативой h3O. Во время тестирования были замерены еще ряд показателей полезности: цвет, склонность к образованию пузырей и скорость очистки СВО после использования.

Дистиллированная вода показала отличные результаты. Использование других хладагентов может быть аргументировано, прежде всего, более высокой эффективностью, но ничего лучше воды мы так и не увидели. Разве что в тестах без нагрузки ряд некоторые жидкости все-таки смогли обойти воду.

Но вода имеет и ряд отрицательных свойств. Она проводит электричество, способствует коррозии металла. К тому же ее внешний вид вполне обыден, она абсолютно прозрачна и неинтересна.

Модель FluidXP+ Ultra преподнесла ряд сюрпризов. Температура процессора без нагрузки на целых два градуса выше показателей любой другой жидкости, а в режимах максимальной нагрузки FluidXP+ Ultra вовсе в аутсайдерах.

Единственным уникальным свойством FluidXP+ Ultra является ее безопасность для людей и окружающей среды. Она практически полностью состоит из пищевых продуктов. Это сказывается не только на цене изделия, но и на очищении: после ряда циклов полной очистки красные частицы FluidXP+ Ultra так и не удалось полностью удалить.

Еще один отрицательный фактор использования FluidXP+ Ultra – повышенная шумность помпы при работе. Это связано с высокой вязкостью жидкости. Но после нескольких часов работы пузырей в СВО замечено не было. Очистка помпы и использование другой жидкости избавило от шума, что подтверждает негативное влияние FluidXP+ Ultra.

Принимая во внимание все вышеописанные факты, трудно рекомендовать FluidXP+ Ultra даже при самой низкой среди конкурентов цене. Но и тут все не сложилось: стоимость этого хладагента намного выше, чем у рассмотренных аналогов от других производителей.

Несколько иначе обстоят дела у MCT-40. По эффективности этот препарат следует сразу за водой, уступая лишь один-два градуса, а местами и выигрывая столько же. При этом высокая вязкость не вызвала проблем в работе помпы: никаких лишних шумов она не издавала. И вопреки ожиданиям, большого скопления пузырей не возникало.

MCT-40 поставляется в бутылке, очень похожей на упаковку для машинного масла. Ощущение дежавю продолжается и дальше: специфический запах и цвет не производят положительного ощущения. Это оттолкнет моддеров, которые используют прозрачные шланги.

К сожалению, MCT-40 не является самым дешевым предложением на рынке. Но эта жидкость хорошо справляется со своими обязанностями. Если у вас корпус выполнен в токсичном стиле, то ничего лучше MCT-40 вы не найдете.

Самым молодым участником испытаний был Feser One. Но, несмотря на кажущееся отсутствие опыта, он смог достичь впечатляющих результатов. В тестах без нагрузки эта жидкость положила на лопатки всех конкурентов, включая дистиллированную воду. В режиме максимального стресса отставание не превышает одного градуса. Более чем удовлетворительный результат.

Для подтверждения диэлектрических свойств Feser One были предприняты крайние меры: на поверхность материнской платы и видеокарты OCZ GeForce 8800 GTX были пролиты несколько капель. Несколько минут, проведенных с замиранием сердца, показали полную работоспособность компонентов.

Feser One поставляется в огромном ассортименте цветовых решений. У нас на тестировании побывал двуцветный вариант: черный в обычном состоянии и голубой при ультрафиолете. Стоит также отметить цену Feser One: она значительно ниже, чем у рассмотренных конкурентных решений.

Принимая во внимание все положительные стороны и практически полное отсутствие отрицательных, мы пришли к выводу, что самым лучшим предложением на рынке в сфере жидкостей для водяного охлаждения компьютера является Feser One. С наличием такой альтернативы довольно трудно решиться на риск использовать обычную воду.

Поделиться соими мыслями по данной теме вы можете на старницах нашего форума.

Рейтинг (голосов):7.88(32)

Личная моддинг коллекция

www.modding.ru

Выделенные серверы под водой, буквально!? Перспективы разведения рыб в серверах?! / Блог компании ua-hosting.company / Хабр

Все мы знаем, что вода и электроника — опасное сочетание, но так ли всегда? Способны ли современные технологии изменить это представление?

В этой статье мы рассмотрим возможность, преимущества и недостатки размещения серверов в жидкости и обсудим возможные проблемы эксплуатации. Покажем, как это все может выглядеть на практике и реально работать. А также обсудим вопрос, почему в серверах могут или не могут плавать рыбы :)

Долгое время потери энергии и затраты на охлаждение при эксплуатации серверов не давали покоя многим, в том числе и нам, так как количество используемых нашими абонентами серверов постоянно стремительно растет, мы все больше задумываемся о создании собственного центра обработки данных (ЦОДа) в обозримом будущем. И когда свыше половины энергии, потребляемой всем ЦОДом, расходуется на охлаждение воздухом, благодаря которому можно не более чем с коэффициентом эффективности 1.7 отвести выделяющееся тепло от оборудования, вольно не вольно задаешься вопросом, а как можно повысить эффективность охлаждения и минимизировать потери энергии?

Из курса физики известно, что воздух — крайне не эффективный проводник тепла, так как его теплопроводность в 25 раз ниже теплопроводности воды. Он скорее более пригоден для теплоизоляции, нежели для теплоотвода. А еще у него очень небольшая теплоемкость, а значит, что его постоянно нужно интенсивно перемешивать и поставлять большими объемами для охлаждения. Другое дело — вода и жидкости. Именно их используют в системах охлаждениях ЦОДов в виде теплообменника, чтобы повысить общий коэффициент эффективности, однако непосредственно с серверами жидкости не контактируют, только через воздушную прослойку и/или радиатор (для охлаждения чипсета к примеру), что позволяет повысить мехнический коэффициент эффективности системы охлаждения (mPUE) до 1.2 или даже до 1.15 при использовании внешней среды в целях охлаждения.

Но как охладить сервер наиболее эффективно? Выход только один — поместить его полностью в жидкость (разумеется диэлектирик), желательно с как можно большей теплопроводностью и теплоемкостью, которая не будет оказывать негативного влияния на компоненты сервера. И таким диэлектриком может быть минеральное масло. Идея, увы и к счастью, оказалась не нова — ее уже несколько лет разрабатывают и реализуют несколько компаний в различных вариациях и с различной эффективностью. Современные технологии позволяют построить «подводный» Дата Центр! Но какие преимущества и недостатки этого решения?

Преимущества и недостатки размещения серверов в жидкости
Охлаждение в жидкости уже сейчас экономит до 95 процентов электроэнергии, которая обычно используется для охлаждения в Дата Центрах и, как следствие, до 50% всей энергии, которую потребляет Дата Центр.

Система охлаждения в жидкости позволяет сэкономить до 60% средств при строительстве Дата Центра, так как нет необходимости в закупке дорогостоящих чиллеров, HVAC (heating ventilation air cooling) систем, строительстве холодных/горячих коридоров, применении фальшпола и т.п.

SSD-диски могут быть погружены в охлаждающую жидкость, разумеется сохранив при этом работоспособность :), без каких-либо модификаций, как в прочем и остальные стандартные компонены серверов, за исключением жестких дисков. Для жестких дисков потребуется использование дополнительных приспособлений, ведь они не будут способны эффективно вращаться в жидкости.

Так как охлаждающая жидкость является диэлектриком (не проводит электричество) — нет необходимости сушить серверы и осушать всю систему для проведения работ в шкафу или с конкретным сервером. Тем не менее эта жидкость должна быть не токсична, без запаха (с минимальным испарением) и не быть агрессивной по отношению к компонентам сервера, к примеру не растворять каучуковую изоляцию проводов и т.п. Подбор правильного и эффективного минерального масла — не простая задача. Для задачи охлаждения в жидкости подойдет далеко не каждое минеральное масло. И в зависимости от выбранного масла мы получим разную допустимую мощность оборудования в 42-юнитовом шкафу, тепло с которого система способна отвести.

Если же говорить об эффективности охлаждения в жидкости в целом, то система позволяет достичь PUE 1.03. Но как такое возможно, спросите Вы, если применение минерального масла для охлаждения позволяет сэкономить только 95% энерегии? За счет чего мы можем получить дополнительную эффективность в 2%?

Ответ тут прост, охлаждение в жидкости позволяет сэкономить энергию, которую потребляют серверы, за счет того, что в них более нет нужды ставить куллеры для охлаждения, а также за счет того, что уменьшается утечка токов с чипов, так как они надежно изоллированы и работают при постоянной температуре (изменение температуры способствует утечке токов). И как следствие мы экономим на системе охлаждения, так как она теперь может занимать меньший объем, ведь ей необходимо отводить уже меньше тепла. Это и дает выигрыш тех заветных 2 процентов на охлаждении, но мы получаем не только это. Сами серверы начинают расходовать энергии на 10-20 процентов меньше, нежели серверы с другим охлаждением. PUE всего Дата Центра растет.

Успехи различных компаний в области охлаждения серверов в жидкости
Минеральное масло способно эффективно защищать от коррозии и пыли, благодаря тому, что в отличии от воздуха не содержит в себе воды и кислорода, продлить срок эксплуатации оборудования. Оно не токсично и не имеет запаха, а значит практически не испаряется. Но оно бывает различной эффективности и подбор правильного минерального масла — настоящее искусство.

Различные компании давно занимаются этими вопросами вплотную и имеют различные успехи благодаря применению разных минеральных масел, создают собственные «ноу-хау». Примерно месяц назад Intel и SGI анонсировали «новость», что способны благодаря применению минерального масла и собственной разработанной системы охлаждения на его основе, которая предусматривает эксплуатацию серверов в жидкости, обеспечить отвод тепла со шкафа в несколько десятков киловатт и даже более. Но у них все еще есть проблемы, в особенности в их сообщении упоминается, что обычные оптические кабели в их минеральном масле работать скорее всего не смогут, по какой причине увы не указано, видимо масло аггресивно для них. Решение далеко от коммерческой эксплуатации.

Другая же компания, GRC, уже давно использует намного более эффективное минеральное масло, предлагает готовое коммерческое решение и не имеет подобных проблем, давно не публикует это, как «новость», при этом по их словам они способны отвести тепла со шкафа до 100 кВатт и более, а значит значительно превзошли успехи Intel! Так что нужно более критично относится ко всей информации из новостей. Если одна компания заявляет о «ноу-хау», то это вовсе не значит, что другая уже не придумала лучше, некоторые просто могут находится в начале своего пути в новом для них направлении :) Как упоминалось выше, Intel еще очень далека от коммерческой эксплуатации этого решения, но без нее в конечном итоге решение любой компании не обойдется.

Перспективы
На сегодняшних материнских платах схемы выложены на «огромном» расстоянии друг от друга, чтоб максимизировать рассеивание тепла для использования в качестве охладителя воздуха, который является ужасно не эффективным охладителем. Благодаря охлаждению в жидкости можно начать производство серверов с более плотно упакованными схемами, которые учитывают работу в жидкости и свойство отвода тепла жидкостью, ведь жидкость имеет не только более высокую теплопроводность, чем воздух, а гораздо более высокую теплоемкость. Самые эффективные на сегодняшний день минеральные масла имеют теплоемкость, которая превосходит теплоемкость воздуха более, чем в 1200 раз!

Это все позволяет не только гораздо эффективнее отводить тепло, но и в случае остановки системы охлаждения получить гораздо больше времени на ее ремонт до перехода работы в критическое состояние из-за роста температуры, так как свойства жидкости (большая теплоемкость и плотность) позволяют поглотить гораздо больше тепла, при этом жидкость не становится перегретой сама, тем самым отодвигается порог «критического перегрева» во времени.

Очень большие перспективы открываются и для суперкомпьютеров, работающих в жидкости, экономия энергии и площадей при эксплуатации высокопроизводительного оборудования — колосальна.

Скорее всего в будущем не останется вычислительного и серверного оборудования, которое смогло бы работать без погружения в жидкость. Преимущества огромны, недостатков практически нет, разве что шкафы теперь нужно располагать не вертикально, а горизонтально, что несколько непривычно. Благодаря этому можно увеличить «плотность» оборудования в Дата Центре, а также обеспечить дополнительный уровень безопасности. Если вдруг Дата Центр будет затоплен водой в результате стихийного бедствия — вода не окажет влияния на серверы, так как они уже погружены в жидкость, пусть и с другой плотностью, но при этом надежно герметизированы в шкафах.

Охлаждение в жидкости в цифрах
Экономия свыше 60% средств при строительстве:
— нет необходимости в закупке дорогостоящих чиллеров, HVAC (heating ventilation air cooling) систем; — нет необходимости в строительстве холодных/горячих коридоров, применении фальшпола; — уменьшается количество генераторов, батарей систем бесперебойного питания (UPS) на N юнитов оборудования, за счет снижения потребления — -- энерегии этим оборудованием при работе в жидкости; — стоимость инфраструктуры в расчете на Ватт ниже на 73%, чем при строительстве ЦОДа с воздушным охлаждением, и на 55%, если ЦОД использует внешнюю среду для охлаждения; — стоимость инфраструктуры в расчете на сервер дает выигрыш в 86 и 70 процентов соответственно.

Экономия свыше 50% средств при эксплуатации:
— оборудование, находясь в жидкости, потребляет на 10-20% энергии меньше, в зависимости от типа, за счет отсутствия куллеров и потерь токов с чипов, благодаря их нахождению в диелектирке и обеспечению их постоянной температуры; — 90-95% энергии сохраняется благодаря охлаждению серверов в жидкости и отсутствию крупногабаритных систем охлаждения в ЦОДе, так как теперь тепло от шкафа с серверами в минеральном масле можно эффективно отвести применив испарительную охлаждающую башню (никакой механики, только испарение воды) или при помощи контура с холодной водой; — нет расходов связанных с амортизацией обычных систем охлаждения, расходы на системы энергообеспечения значительно сокращаются в перерасчете на N юнитов, благодаря тому, что нужно содержать меньше батарей UPS в том числе; минеральное масло практически вечно, его не нужно менять и почти не нужно добавлять (за исключением случаев утечки), в отличии от других охладителей в ЦОДах; — если в среднем сервером потребляется порядка 230-270 Ватт мощности и 50-170 Ватт на охлаждение, в зависимости от применяемого метода охлаждения, то использование охлаждения в жидкости снижает среднее потребление энергии сервером до 210 Ватт, а энергия необходимая на его охлаждения составляет порядка 10 Ватт!

Можно отвести свыше 100кВатт тепла от погруженного в минеральное масло шкафа на 42 юнита! А также значительно снизить траты на серверное оборудование, до 50% на различные комплектующие, а все потому, что теперь постоянная температура эксплуатации примерно на 20 градусов ниже, чем в воздушной среде, есть возможность применять без опасений даже декстопные комплектующие, так как они работают при гораздо более низких температурах.

От «подводных» серверов до ПК, охлаждаемых жидкостью, или как создать рабочую станцию в жидкости в домашних условиях
Конечно эта идея не получила и не получит столь широкого применения на рынке персональных компьютеров, просто потому, что большинство уже давно перешло на ноутбуки и другие гаджеты, домашние рабочие станции в корпусе «tower» используют зачастую только профессионалы, так как им необходима большая производительность и отвод большого количества тепла. Вот для них погружение их бесценного железа в жидкость может стать очень полезным!

Оказывается реализовать это в домашних условиях не сложно и возможно, причем было сделано уже многими любителями модинга и довольно давно. Некоторые компании даже предлагают приобрести готовое решение, на основе минерального масла «Crystal Plus 70T», которое доступно в свободной продаже и по словам экспериментаторов идеально подходит для этой задачи, имеет теплоемкость в 750 раз выше, чем у воздуха и плотность более низкую, чем у воды.

Перемешивание жидкости может осуществляться благодаря пропусканию воздуха через минеральное масло или даже обычному компьютерному куллеру, который в минеральном масле вращается само собой гораздо медленнее, нежели в воздухе, однако сохраняет свою работоспособность. На вопрос о том, что делать с парами воды, которые будут попадать в минеральное масло при пропускании воздуха с целью перемешивания, разработчики отвечают, что благодаря различной плотности (бОльшая у воды), вода будет скапливаться в самом низу «аквариума», где не находится каких-либо электрических компонентов, однако они еще не видели, чтоб в процессе долгой эксплуатации появлялось хотя бы мизерное количество воды, иначе бы резервуар начал напоминать «лава-лампу».

Хочу, чтоб в серверах плавали рыбы! Бросьте туда рыб!
Смею признать, что наблюдение различных РЫБОВ под водой — незабываемое удовольствие. Я дайвер и не отказался бы от рабочей станции дома в виде аквариума с тропическими или не очень тропическими рыбами.

Но увы, генная инженерия еще отстает от моды в IT, рыбы сдохнут, если их поместить в минеральное масло, оно по свойствам крайне далеко от так нужной рыбам воды. Будем надеятся, что эту идею, либо за счет применения новых технологий, либо за счет генной инженерии, удастся кому-нибудь реализовать в будущем, а пока можно использовать роботизированных рыб!

Я буду первым, кто закажет роботизированную boxfish!

Ну и само собой не забудьте поддержать строительство нашего будущего подводного Дата Центра (в идеи которого я не сомневаюсь) — закажите выделенные серверы у нас, пока что в Нидерландах и США и от $49, а в будущем и на Барьерном рифе!

habr.com

Компьютер в аквариуме - Мастерок.жж.рф

 

Понятно, что все уже в курсе, что это не фотошоп а вполне себе доступная для каждого фишка — засунуть системник компьютера в жидкость. С одной стороны увеличить охлаждение, а вообще наверное просто для красоты и прикола. Но вот я как то не задавался вопросом, а какие жидкости для этого используют ?

Давайте узнаем и это …

 

Вот первых сразу же всплывает такая версия для этой темы как «сухая вода».     Это вещество было разработано в США в 2004 году с чисто практическими целями. И если бы не его необычные свойства в сочетании со сходством с обычной водой, наверное, никто, кроме специалистов, и не узнал бы о нем.

Загадочная жидкость без цвета и запаха, так похожая на воду, заинтересовала многих.

Ведь сухая вода:

  • не проводит электричество;
  • кипит при температуре 49°C;
  • не смачивает поверхности.

На практике это означает, что если опустить в нее мобильный телефон (планшет, включенный в розетку монитор), он будет спокойно работать. Лист бумаги, помещенный в эту воду, не намокнет, а чернила – не расплывутся. Сахар и соль в этой «воде» не растворяются. Сделать чай или кофе на ней тоже не получится. В кипящую сухую воду можно спокойно опустить руку – это еще один эффектный фокус.

 

 

Может показаться, что сухая вода – это просто ингредиент для фокусов и приколов, и никакой практической пользы от нее нет. Но все как раз наоборот. Это вещество разрабатывалось для решения очень серьезных задач. И, если еще раз посмотреть его свойства, можно даже догадаться, с какими именно.

Сухая вода была создана для систем автоматического пожаротушения. Те, кто хотя бы раз сталкивался с последствиями тушения даже небольшого возгорания, обязательно оценят преимущества сухой воды.

Представьте себе, что в офисе сработала система пожаротушения. Очаг возгорания потушен, но какой ценой! Важная документация безнадежно испорчена, офисная техника, залитая водой и пеной, не работает, а мебель проще заменить, чем приводить в порядок.

Ведь пожар может случиться где угодно, например, в библиотеке или музее, крупном дата-центре или на телестанции, или в любом другом месте, где много дорогостоящей аппаратуры, важных документов, бесценных произведений искусства. Представляете, какие потери помогает предотвратить сухая вода!

В этом видеоролике можно увидеть, как сухая вода используется по прямому назначению.

 

 

Строго говоря, сухая вода – это совсем не вода. Формула сухой воды CF3CF2C(O)CF(CF3)2. Можно прочитать это как перфтор(этил-изопропилкетон) или не ломать язык и использовать ее официальное название — Novec 1230. В молекуле этого вещества, как видно из формулы, нет атомов водорода. Этим можно объяснить необычные свойства этого вещества.

Производители называют Novec 1230 огнетушащим газом нового поколения. А если газ, то почему он жидкий? А почему мы и нет? Жидкий газ в зажигалках или баллонах никого не удивляет. Просто в газообразное состояние он переходит лишь при определенных условиях (температуре или давлении).

Для человека это вещество безопасно. Правда, под безопасностью для человека производители имели в виду, что это вещество не токсично, не выжигает кислород в помещении, и не оказывает отрицательного воздействия на глаза и легкие.

Но пить сухую воду все же не стоит.

 

Можно ли изготовить сухую воду в домашних условиях? Практически однозначно – нет.

Может быть, получится хотя бы купить сухую воду? В принципе, да. Газовые системы пожаротушения используются в США практически повсеместно. Нет, не в каждой квартире или доме, поскольку для частных лиц эти системы все же дороговаты, а в крупных учреждениях и фирмах. В России такие системы используются реже. Но тем не менее, продаются и сами системы, и все их компоненты. Только не в магазинах фокусов, а в специализированных компаниях, которые предлагают системы противопожарной безопасности.

Газовые системы пожаротушения придуманы давно. Но раньше в них использовался опасный для человека углекислый газ, затем – вредные для окружающей среды хладоны.

В 1993 году, когда хладон 114 был запрещен, сотрудники американской компании 3M, которая специализируется на разработке систем противопожарной безопасности, приступили к поиску нового вещества, безопасного для окружающей среды и человека.

Novec 1230 был представлен публике лишь в 2004 году. Но ждать его появления 11 лет, безусловно, стоило. Его называют самым чистым газом в истории человечества. Безопасный для окружающей среды, человека, техники и документов, этот газ выполняет свою работу идеально.

Но все так в аквариумы ее заливать наверное не совсем дешево да и температура кипения и усиленное испарение не предвещают ничего хорошего.

 

А какие еще варианты ?

Ну вот например «жидкий парафин» или по простому — минеральное масло.

Минеральное масло (Paraffinum Liquidum) – это бесцветная и не имеющая запаха субстанция, которая действительное является производным нефти. К минеральным маслам (углеводородам) относятся:

  • Paraffin — парафин
  • Vaseline — вазелин
  • Ceresin — церезин
  • Petrolatum — петролатум
  • C13-14 isoparaffin и C13-16 isoparaffin — изопарафин
  • Microcrystalline wax — микрокристаллический воск

Минеральное масло бывает двух категорий: техническое и косметическое. Косметическое минеральное масло, в отличие от технического, проходит многоступенчатую очистку от вредных примесей, которые чаще всего и являются причиной проблем с кожей. На основе косметического минерального масла создается косметика всех сортов и видов, а также аптечные мази.

А вот тут даже энтузиасты погружают системник в подсолнечное масло

 

Теперь  вот еще  такая интересная статья с habrahabr.ru

 

 

В этой статье мы рассмотрим возможность, преимущества и недостатки размещения серверов в жидкости и обсудим возможные проблемы эксплуатации. Покажем, как это все может выглядеть на практике и реально работать. А также обсудим вопрос, почему в серверах могут или не могут плавать рыбы :) 

Долгое время потери энергии и затраты на охлаждение при эксплуатации серверов не давали покоя многим, в том числе и нам, так как количество используемых нашими абонентами серверов постоянно стремительно растет, мы все больше задумываемся о создании собственного центра обработки данных (ЦОДа) в обозримом будущем. И когда свыше половины энергии, потребляемой всем ЦОДом, расходуется на охлаждение воздухом, благодаря которому можно не более чем с коэффициентом эффективности 1.7 отвести выделяющееся тепло от оборудования, вольно не вольно задаешься вопросом, а как можно повысить эффективность охлаждения и минимизировать потери энергии?

 

 

Из курса физики известно, что воздух — крайне не эффективный проводник тепла, так как его теплопроводность в 25 раз ниже теплопроводности воды. Он скорее более пригоден для теплоизоляции, нежели для теплоотвода. А еще у него очень небольшая теплоемкость, а значит, что его постоянно нужно интенсивно перемешивать и поставлять большими объемами для охлаждения. Другое дело — вода и жидкости. Именно их используют в системах охлаждениях ЦОДов в виде теплообменника, чтобы повысить общий коэффициент эффективности, однако непосредственно с серверами жидкости не контактируют, только через воздушную прослойку и/или радиатор (для охлаждения чипсета к примеру), что позволяет повысить мехнический коэффициент эффективности системы охлаждения (mPUE) до 1.2 или даже до 1.15 при использовании внешней среды в целях охлаждения.

 

 

Но как охладить сервер наиболее эффективно? Выход только один — поместить его полностью в жидкость (разумеется диэлектирик), желательно с как можно большей теплопроводностью и теплоемкостью, которая не будет оказывать негативного влияния на компоненты сервера. И таким диэлектриком может быть минеральное масло. Идея, увы и к счастью, оказалась не нова — ее уже несколько лет разрабатывают и реализуют несколько компаний в различных вариациях и с различной эффективностью. Современные технологии позволяют построить «подводный» Дата Центр! Но какие преимущества и недостатки этого решения?

 

Преимущества и недостатки размещения серверов в жидкости

Охлаждение в жидкости уже сейчас экономит до 95 процентов электроэнергии, которая обычно используется для охлаждения в Дата Центрах и, как следствие, до 50% всей энергии, которую потребляет Дата Центр.

 

 

Система охлаждения в жидкости позволяет сэкономить до 60% средств при строительстве Дата Центра, так как нет необходимости в закупке дорогостоящих чиллеров, HVAC (heating ventilation air cooling) систем, строительстве холодных/горячих коридоров, применении фальшпола и т.п.

 

 

SSD-диски могут быть погружены в охлаждающую жидкость, разумеется сохранив при этом работоспособность :), без каких-либо модификаций, как в прочем и остальные стандартные компонены серверов, за исключением жестких дисков. Для жестких дисков потребуется использование дополнительных приспособлений, ведь они не будут способны эффективно вращаться в жидкости.

 

 

Так как охлаждающая жидкость является диэлектриком (не проводит электричество) — нет необходимости сушить серверы и осушать всю систему для проведения работ в шкафу или с конкретным сервером. Тем не менее эта жидкость должна быть не токсична, без запаха (с минимальным испарением) и не быть агрессивной по отношению к компонентам сервера, к примеру не растворять каучуковую изоляцию проводов и т.п. Подбор правильного и эффективного минерального масла — не простая задача. Для задачи охлаждения в жидкости подойдет далеко не каждое минеральное масло. И в зависимости от выбранного масла мы получим разную допустимую мощность оборудования в 42-юнитовом шкафу, тепло с которого система способна отвести.

 

 

Если же говорить об эффективности охлаждения в жидкости в целом, то система позволяет достичь PUE 1.03. Но как такое возможно, спросите Вы, если применение минерального масла для охлаждения позволяет сэкономить только 95% энерегии? За счет чего мы можем получить дополнительную эффективность в 2%?

 

 

Ответ тут прост, охлаждение в жидкости позволяет сэкономить энергию, которую потребляют серверы, за счет того, что в них более нет нужды ставить куллеры для охлаждения, а также за счет того, что уменьшается утечка токов с чипов, так как они надежно изоллированы и работают при постоянной температуре (изменение температуры способствует утечке токов). И как следствие мы экономим на системе охлаждения, так как она теперь может занимать меньший объем, ведь ей необходимо отводить уже меньше тепла. Это и дает выигрыш тех заветных 2 процентов на охлаждении, но мы получаем не только это. Сами серверы начинают расходовать энергии на 10-20 процентов меньше, нежели серверы с другим охлаждением. PUE всего Дата Центра растет.

 

Успехи различных компаний в области охлаждения серверов в жидкости

Минеральное масло способно эффективно защищать от коррозии и пыли, благодаря тому, что в отличии от воздуха не содержит в себе воды и кислорода, продлить срок эксплуатации оборудования. Оно не токсично и не имеет запаха, а значит практически не испаряется. Но оно бывает различной эффективности и подбор правильного минерального масла — настоящее искусство.

 

 

Различные компании давно занимаются этими вопросами вплотную и имеют различные успехи благодаря применению разных минеральных масел, создают собственные «ноу-хау». Примерно месяц назад Intel и SGI анонсировали «новость», что способны благодаря применению минерального масла и собственной разработанной системы охлаждения на его основе, которая предусматривает эксплуатацию серверов в жидкости, обеспечить отвод тепла со шкафа в несколько десятков киловатт и даже более. Но у них все еще есть проблемы, в особенности в их сообщении упоминается, что обычные оптические кабели в их минеральном масле работать скорее всего не смогут, по какой причине увы не указано, видимо масло аггресивно для них. Решение далеко от коммерческой эксплуатации.

 

 

Другая же компания, GRC, уже давно использует намного более эффективное минеральное масло, предлагает готовое коммерческое решение и не имеет подобных проблем, давно не публикует это, как «новость», при этом по их словам они способны отвести тепла со шкафа до 100 кВатт и более, а значит значительно превзошли успехи Intel! Так что нужно более критично относится ко всей информации из новостей. Если одна компания заявляет о «ноу-хау», то это вовсе не значит, что другая уже не придумала лучше, некоторые просто могут находится в начале своего пути в новом для них направлении :) Как упоминалось выше, Intel еще очень далека от коммерческой эксплуатации этого решения, но без нее в конечном итоге решение любой компании не обойдется.

 

Перспективы

На сегодняшних материнских платах схемы выложены на «огромном» расстоянии друг от друга, чтоб максимизировать рассеивание тепла для использования в качестве охладителя воздуха, который является ужасно не эффективным охладителем. Благодаря охлаждению в жидкости можно начать производство серверов с более плотно упакованными схемами, которые учитывают работу в жидкости и свойство отвода тепла жидкостью, ведь жидкость имеет не только более высокую теплопроводность, чем воздух, а гораздо более высокую теплоемкость. Самые эффективные на сегодняшний день минеральные масла имеют теплоемкость, которая превосходит теплоемкость воздуха более, чем в 1200 раз!

 

 

Это все позволяет не только гораздо эффективнее отводить тепло, но и в случае остановки системы охлаждения получить гораздо больше времени на ее ремонт до перехода работы в критическое состояние из-за роста температуры, так как свойства жидкости (большая теплоемкость и плотность) позволяют поглотить гораздо больше тепла, при этом жидкость не становится перегретой сама, тем самым отодвигается порог «критического перегрева» во времени.

Очень большие перспективы открываются и для суперкомпьютеров, работающих в жидкости, экономия энергии и площадей при эксплуатации высокопроизводительного оборудования — колосальна.

 

 

Скорее всего в будущем не останется вычислительного и серверного оборудования, которое смогло бы работать без погружения в жидкость. Преимущества огромны, недостатков практически нет, разве что шкафы теперь нужно располагать не вертикально, а горизонтально, что несколько непривычно. Благодаря этому можно увеличить «плотность» оборудования в Дата Центре, а также обеспечить дополнительный уровень безопасности. Если вдруг Дата Центр будет затоплен водой в результате стихийного бедствия — вода не окажет влияния на серверы, так как они уже погружены в жидкость, пусть и с другой плотностью, но при этом надежно герметизированы в шкафах.

Охлаждение в жидкости в цифрах

 

Экономия свыше 60% средств при строительстве:

— нет необходимости в закупке дорогостоящих чиллеров, HVAC (heating ventilation air cooling) систем;— нет необходимости в строительстве холодных/горячих коридоров, применении фальшпола;— уменьшается количество генераторов, батарей систем бесперебойного питания (UPS) на N юнитов оборудования, за счет снижения потребления — — энерегии этим оборудованием при работе в жидкости;— стоимость инфраструктуры в расчете на Ватт ниже на 73%, чем при строительстве ЦОДа с воздушным охлаждением, и на 55%, если ЦОД использует внешнюю среду для охлаждения;— стоимость инфраструктуры в расчете на сервер дает выигрыш в 86 и 70 процентов соответственно.

 

 

 

Экономия свыше 50% средств при эксплуатации:

— оборудование, находясь в жидкости, потребляет на 10-20% энергии меньше, в зависимости от типа, за счет отсутствия куллеров и потерь токов с чипов, благодаря их нахождению в диелектирке и обеспечению их постоянной температуры;— 90-95% энергии сохраняется благодаря охлаждению серверов в жидкости и отсутствию крупногабаритных систем охлаждения в ЦОДе, так как теперь тепло от шкафа с серверами в минеральном масле можно эффективно отвести применив испарительную охлаждающую башню (никакой механики, только испарение воды) или при помощи контура с холодной водой;— нет расходов связанных с амортизацией обычных систем охлаждения, расходы на системы энергообеспечения значительно сокращаются в перерасчете на N юнитов, благодаря тому, что нужно содержать меньше батарей UPS в том числе;минеральное масло практически вечно, его не нужно менять и почти не нужно добавлять (за исключением случаев утечки), в отличии от других охладителей в ЦОДах;— если в среднем сервером потребляется порядка 230-270 Ватт мощности и 50-170 Ватт на охлаждение, в зависимости от применяемого метода охлаждения, то использование охлаждения в жидкости снижает среднее потребление энергии сервером до 210 Ватт, а энергия необходимая на его охлаждения составляет порядка 10 Ватт!

 

 

 

Можно отвести свыше 100кВатт тепла от погруженного в минеральное масло шкафа на 42 юнита! А также значительно снизить траты на серверное оборудование, до 50% на различные комплектующие, а все потому, что теперь постоянная температура эксплуатации примерно на 20 градусов ниже, чем в воздушной среде, есть возможность применять без опасений даже декстопные комплектующие, так как они работают при гораздо более низких температурах.

 

От «подводных» серверов до ПК, охлаждаемых жидкостью, или как создать рабочую станцию в жидкости в домашних условиях

Конечно эта идея не получила и не получит столь широкого применения на рынке персональных компьютеров, просто потому, что большинство уже давно перешло на ноутбуки и другие гаджеты, домашние рабочие станции в корпусе «tower» используют зачастую только профессионалы, так как им необходима большая производительность и отвод большого количества тепла. Вот для них погружение их бесценного железа в жидкость может стать очень полезным!

Оказывается реализовать это в домашних условиях не сложно и возможно, причем было сделано уже многими любителями модинга и довольно давно. Некоторые компании даже предлагают приобрести готовое решение, на основе минерального масла «Crystal Plus 70T», которое доступно в свободной продаже и по словам экспериментаторов идеально подходит для этой задачи, имеет теплоемкость в 750 раз выше, чем у воздуха и плотность более низкую, чем у воды.

 

 

masterok.livejournal.com

ЭкоФЛОПС - Охлаждайте разумно | Погружные технологии

Вся система состоит из четырех основных компонентов:

  • ёмкость для погружения вычислительного оборудования
  • насосный модуль, включающий теплообменник и фильтр (Н)
  • блок контроля и управления (БУ)
  • внешний теплообменный модуль (ТО)

Ёмкость для погружения представляет собой серверную стойку, положенную на бок и помещенную в контейнер для жидкости, через который циркулирует диэлектрический теплоноситель. Тепло от вычислительного оборудования забирается теплоносителем и переносится в теплообменник,  где происходит передача тепла воде (см. рисунок). Применение внутристоечных крепежей стандартного форм-фактора позволяет использование вычислительных модулей всех доступных на рынке производителей.

Кроме погружных ванн доступен другой способ охлаждения диэлектрическим теплоносителем. В нем каждый из вычислительных серверов упаковывается в отдельный герметичный корпус – контейнер, имеющий на торце все необходимые для подключения к «внешнему миру» разъемы, включая гидравлические разъемы для подвода и отвода масла.

Такой способ компоновки, дает сравнительно большую плотность установки в расчете вычислительных ядер на квадратный метр площади, так как размещение возможно в несколько ярусов.

Обслуживание вычислительной техники

Для проведения работ, связанных с заменой компонентов серверов, погруженных в диэлектрическую жидкость, предусмотрен специальный порядок. Оборудование помещается на специально установленные поверх стойки рейлинги или транспортируется в ремзону где далее проводится замена неисправных элементов. Для извлечения больших серверных корпусов предусматривается специальный подъемный механизм. Усложнившаяся последовательность действий при обслуживании компенсируется снижением количества отказов техники.

Обслуживание системы

Система охлаждения содержит блок контроля, который в непрерывном режиме следит за насосами и температурой в различных точках. Насосы дублированы, и система контролирует выдаваемые ими потоки. В случае неисправностей происходит информирование оператора любыми требующимися способами.

ecoflops.ru

Жидкие диэлектрики — Мегаэнциклопедия Кирилла и Мефодия — статья

Жидкими диэлектриками являются насыщенные ароматические, хлорированные и фторированные углеводороды, ненасыщенные парафиновые и вазелиновые масла, кремнийорганические соединения (полиорганосилоксаны), сжиженные газы, дистиллированная вода, расплавы некоторых халькогенидов и др. Для жидких диэлектриков характерна ковалентная связь электронов в молекулах, а между молекулами действуют ван-дер-ваальсовые силы.

Жидкие диэлектрики применяются в электроизоляционной технике в качестве пропитывающих и заливочных составов при производстве электро- и радиотехнической аппаратуры: в электрических аппаратах высокого напряжения, а также в блоках электронной аппаратуры. По применению они делятся на жидкости для конденсаторов, кабелей, циркулярных систем охлаждения выпрямительных установок и турбогенераторов, масляных выключателей. Электрическая прочность, диэлектрическая проницаемость и теплопроводность жидких диэлектриков имеет более высокие значения по сравнению с воздухом и другими газами при атмосферном давлении. Поэтому электроизоляционные жидкие диэлектрики должны обеспечивать повышение электрической прочности твердой пористой изоляции, отвод тепла от обмоток трансформатора, гашение электрической дуги в масляных выключателях. В импульсном электрическом поле их электрическая прочность возрастает.

Основными характеристиками диэлектрических жидкостей являются диэлектрическая проницаемость, электропроводность и электрическая прочность.

Диэлектрическая проницаемость является истинной характеристикой жидкостей и характеризуется дипольным моментом и поляризуемостью молекул. Собственная проводимость жидких диэлектриков имеет электронную и ионную составляющие. Она обусловлена автоэлектронной эмиссией с катода, электролитической диссоциацией молекул, ионизацией молекул. Электрические свойства жидких диэлектриков в значительной мере зависят от степени их очистки. Загрязнения, как правило, снижают электрическую прочность жидких диэлектриков и увеличивают проводимость за счет возрастания количества ионов и заряженных коллоидных частиц.

Проводимость жидкостей определяется ионизацией молекул и наличием в жидкости примесей. Основными примесями, уменьшающими электрическую прочность, являются микрочастицы, микропузырьки и вода. Очистка диэлектрических жидкостей (дистилляцией, частичной кристаллизацией, адсорбцией, ионным обменом) приводит к уменьшению электропроводности и диэлектрических потерь и возрастанию электрической прочности. Электрическая прочность в значительной степени является технологической характеристикой жидкого диэлектрика и электродов, способов приготовления и эксплуатации изоляционного промежутка. На нее влияют не только те примеси, которые определяют электропроводность, но и форма и материал электродов, длительность импульса, наличие пузырьков.

Наиболее распространенными жидкими диэлектриками, применяемыми в качестве электроизоляционных материалов, являются:

нефтяные масла — трансформаторное, конденсаторное и кабельное;

синтетические жидкие диэлектрики — полихлордифенил (совол, совтол), кремнийорганические и фторорганические;

растительные технические масла (касторовое, льняное, конопляное и тунговое) в электроизоляционной технике применяются ограниченно.

Нефтяные масла — слабовязкие, практически неполярные жидкости. По химическому составу представляют смесь различных углеводородов парафинового, нафтенового, ароматического и нафтено-ароматического рядов с небольшим (до 1% масс) содержанием присадок, улучшающих их стойкость к термоокислительному старению, а также температурно-вязкостные характеристики. Нефтяное трансформаторное масло получило наиболее широкое применение в высоковольтных аппаратах: трансформаторах, масляных выключателях, высоковольтных водах. Нефтяное трансформаторное масло является неполярным диэлектриком. Поэтому в чистом масле диэлектрические потери обусловлены в основном токами проводимости, величина которых мала, следовательно, малы и диэлектрические потери. При 20оС и 100 Гц = 2, 2-2, 3, = 1010-1013Ом.м, Епр= 10-28 кВ/мм. В механизме пробоя основное влияние на образование газоразрядного канала проводимости имеет нерастворенная в масле полярная полупроводящая и проводящая примесь. Вода, растворенная в масле, увеличивает электропроводность и электрические потери, но мало влияет на электрическую прочность. Вода, выделенная в виде мелкодисперсных капель, вызывает резкое увеличение неоднородности поля, что приводит к снижению пробивного напряжения.

Нефтяное конденсаторное масло получают из трансформаторного путем его более глубокой очистки адсорбентами. Его электрические свойства лучше, чем у трансформаторного масла. При 20оС и 1 Гц = 2, 1-2, 3, = 1011-1012Ом.м, Епр= 14-18 кВ/мм. Используют для пропитки бумажных конденсаторов, в особенности силовых. При пропитке в результате заполнения пор бумаги маслом увеличиваются диэлектрическая проницаемость и электрическая прочность бумаги, следовательно, возрастают емкость конденсатора и его рабочее напряжение.

Нефтяное кабельное масло применяют для пропитки бумажной изоляции силовых кабелей с рабочим напряжением до 35 кВ в свинцовой или алюминиевой оболочке, а также для заполнения металлических оболочек маслонаполненных кабелей на напряжение до 110кВ и выше.

Конденсаторные масла отличаются от трансформаторных масел более тщательной очисткой и меньшими значениями tg (до 2.10-4). Недостатки нефтяных масел — пожаро- и взрывоопасность, невысокая стойкость к тепловому и электрическому старению, гигроскопичность.

Наибольшее применение получили синтетические жидкости на основе хлорированных углеводородов (совол, совтол), что связано с их высокой термической устойчивостью, электрической стабильностью, негорючестью. Однако в связи с токсичностью хлорированных углеводородов их применение сначала ограничивалось, а в настоящее время почти повсеместно запрещено.

Жидкие диэлектрики на основе кремнийорганических соединений (полиорганосилоксанов) являются нетоксичными и экологически безопасными. Они не вызывают коррозии металлов, обладают очень низкой гигроскопичностью и морозостойкостью. Эти жидкости представляют собой полимеры с низкой степенью полимеризации, в молекулах которых содержится повторяющаяся силоксанная группировка: Кремний-кислородная связь имеет высокую термическую и химическую стойкость, поэтому кремнийорганические соединения устойчивы при высоких температурах (до 250 оС). По своим диэлектрическим характеристикам полиорганосилоксановые жидкости приближаются к неполярным диэлектрикам. При 20 оС и 100 Гц = 2, 4-2, 8, = 1011-1012Ом.м, Епр= 14-18 кВ/мм. Полиорганосилоксановые жидкости используют в импульсных трансформаторах, специальных конденсаторах, работающих при повышенной температуре, блоках радио- и электронной аппаратуры и в некоторых других случаях. Их недостаток — сравнительно быстрая воспламеняемость, кроме того, они значительно дороже нефтяных масел.

Жидкие диэлектрики на основе фторорганических соединений отличаются негорючестью, высокой химической, окислительной и термической стабильностью, высокими электрофизическими и теплопередающими свойствами. Молекулы фторорганических жидкостей состоят из атомов углерода и фтора, при этом молекулярную цепь образуют атомы углерода. Фторорганические жидкости — неполярные диэлектрики. При 20 оС и 100 Гц = 2, 2-2, 5, ρ = 1012-1014Ом.м, Епр= 12-19 кВ/мм. Они обеспечивают более интенсивный отвод тепла от охлаждаемых обмоток и магнитопроводов трансформатора, чем нефтяные масла и кремнийорганические соединения. Применяются для наполнения небольших трансформаторов, блоков электронного оборудования и других электрических аппаратов в тех случаях, когда рабочие температуры велики для других видов жидких диэлектриков. Некоторые перфторированные жидкие диэлектрики могут использоваться для создания испарительного охлаждения в силовых трансформаторах. Недостатки — токсичность некоторых видов фторорганических жидкостей, высокая стоимость.

К растительным маслам относятся касторовое, тунговое, льняное, конопляное. Растительные масла — слабополярные диэлектрики. Касторовое масло имеет высокую нагревостойкость и используется как пластификатор и для пропитки бумажных конденсаторов. Тунговое, льняное и конопляное масла относятся к «высыхающим» маслам. Высыхание обусловлено не испарением жидкости, а химическим процессом, в основе которого лежит окислительная полимеризация. Используются в качестве пленкообразующих в лаках (в том числе электроизоляционных), эмалях и красках.

Касторовое масло получается из семян клещевины; иногда используется для пропитки бумажных конденсаторов. Плотность касторового масла 0, 95-0, 97 Мг/м3, температура застывания от минус 10 до минус 180 °С; диэлектрическая постоянная Ɛ равна 4, 0 - 4, 5 при температуре 200 °С; Епр=15-20 Мв/м. Касторовое масло не растворяется в бензине, но растворяется в этиловом спирте.

Льняное масло золотисто - желтого цвета получается из семян льна. Его плотность 0, 93-0, 94 Мг/м3, температура застывания - около -200 °С.

Тунговое (древесное) масло получают из семян тунгового дерева, которое разводится на Дальнем Востоке и на Кавказе. Тунговое масло не является пищевым и даже токсично. Плотность тунгового масла — 94 Мг/м3, температура застывания — от 0 до минус 50 °С.По сравнению с льняным маслом тунговое высыхает быстрее. Оно даже в толстом слое высыхает более равномерно и дает водонепроницаемую пленку, чем льняное.

Высыхающие масла применяются в электропромышленности для изготовления электроизоляционных масляных лаков, лакотканей, для пропитки дерева и для других целей. В последнее время наблюдается тенденция к замене высыхающих масел синтетическими материалами. Невысыхающие масла могут применяться в качестве жидких диэлектриков.

megabook.ru

Погружная система охлаждения сервера или фермы на базе Novec как альтернатива воздушному охлаждению / Блог компании 3M Россия / Хабр

Всем привет!

Мы продолжаем рассказывать о наших продуктах и в прошлой статье Сухая вода Novec 1230 для защиты серверных и не только было много вопросов об инновациях в сфере охлаждения серверных, поэтому решили выделить ответы на многие вопросы в отдельный пост! К тому же, совсем недавно наше решение использовалось на крупнейшей крипто-ферме в Гонконге!

Узнаете формулы с доски?

В статье обсуждаются возможности и преимущества пассивной двухфазной погружной системы охлаждения серверов на основе фторкетонов. В статье вас ждут интриги и расследования, разбор технологии и эксперименты!

Воздушная система охлаждения
Вначале обсудим ограничения традиционной воздушной системы охлаждения. Причинами малой эффективности традиционной системы воздушного охлаждения являются: действие второго закона термодинамики (необратимость тепловых процессов) вследствие множества процессов теплопереноса, перемешивание потоков холодного и нагретого воздуха, высокие показатели мощности, потребляемой охлаждающим оборудованием – чиллерами, кондиционерами и т.д., а также использование воздуха в качестве теплопередающего звена. При внедрении данных технологий в настоящий момент учитывают, что их эффективность снижена по одной или нескольким вышеназванным причинам.

Охлаждаемые водой задние двери, канальная система воздушного охлаждения, стойки с принудительной циркуляцией ограничивают смешение воздушных потоков. Эти и некоторые другие технологии позволяют эксплуатировать систему без чиллера, переключаясь на использование экономайзера, когда позволяет погода. Системы с постоянно работающим экономайзером проще в своем устройстве и могут достигнуть показателя эффективности использования энергии <1.3. Такие серверные должны располагаться в районах с относительно холодным климатом.

Стоит также учитывать другие неотъемлемые экономические аспекты и влияние на окружающую среду. Возможность управления потоком воздуха на уровне шасси, стойки или серверной добавляет значительную стоимость при установке каждого нового или расширения существующего дата-центра. Поэтому вопрос увеличения энергоэффективности стоит рассматривать не только с точки зрения того, как отвести избыточное тепло, но и с точки зрения того, как его использовать. Тем не менее, возможность и стоимость рекуперации отведенного тепла на любом расстоянии от дата-центра ограничены большим объемным потоком воздуха и низким значением его полезной работы.

Рассмотрим традиционные системы жидкостного охлаждения и их ограничения
Жидкостное охлаждение может уменьшить влияние вышеупомянутых причин низкой эффективности воздушного охлаждения, облегчить рекуперацию отведенного тепла и увеличить его термодинамическую доступность. В одном из исследований было проведено сравнение двух систем охлаждения для суперкомпьютера: гибридной системы воздушное/жидкостное охлаждение и воздушной системы. В том же исследовании была предсказана эффективность полностью жидкостной системы охлаждения и этой же системы, работающей в отсутствии чиллеров или с водным экономайзером. Последняя конфигурация позволяет сэкономить до 90% энергии на охлаждение по сравнению с кластером на воздушном охлаждении.
Так в чем проблема?
Тем не менее, внедрение традиционных жидкостных систем охлаждения, будь они одно- или двухфазными, закрытыми или с погружением, осложнено количеством и вариацией производящих тепло устройств в сервере и требованием, чтобы для каждого сервера в пределах стойки могла быть осуществлена процедура горячей замены (hot swap). Это усложняет задачу направления всего тепла, производимого на печатной плате, к внешнему потоку охлаждающей жидкости. Как результат, гибридная воздушно-жидкостная система охлаждения привносит расходы на дизайн и производство охлаждающих пластин, резервные насосы, подвод воды, быстроразъемные соединения, датчики и теплообменники.

Полностью жидкостная система охлаждения часто еще более сложна и требует установки дополнительных охлаждающих пластин, грейферов (подъемников с цепляющим устройством) и герметичных электрических разъемов. Эффективность многих таких систем ограничена вторичным или даже третичным термоинтерфейсом и температурным скольжением охлаждающей жидкости (это явление изменение температуры кипящей жидкости в результате изменения состава). Также в системах, где рабочими жидкостями является гидрофторуглероды или перфторуглероды, могут возникать протечки, что ведет к выбросу веществ с высоким потенциалом глобального потепления в атмосферу.

Таким образом, необходима простая, компактная система охлаждения, которая минимизирует использование природных ресурсов и выбросы вредных веществ. При этом должен осуществляться отвод всей выделяемой теплоты при минимизации разницы температур между активным слоем в чипе процессора и водой в качестве вторичного теплоносителя. Система должна быть модульной, масштабируемой с легкой настройкой под новое оборудование.

Существующие системы жидкостного охлаждения
Пассивная двухфазная погружная система охлаждения давно используется для охлаждения такого дорогостоящего электронного оборудования как трансформаторы, тяговые преобразователи, компьютеры специального назначения и клистроны. Данная технология относительно проста, надежна и эффективна.

Тяговый преобразователь карьерного самосвала.

В данных системах обычно используют емкости под давлением и герметичные электрические разъемы. Емкости вакуумируют и заполняются практически также как и холодильники и их обслуживание в полевых условиях невозможно. Создание аналогичной системы охлаждение для компьютеров будет дорогим и сложным вследствие огромного числа заменяемых компонентов и коннекторов. По этой причине многие вообще не рассматривают погружное охлаждение в контексте датакомовского оборудования.

Паровой обезжириватель с открытой ванной
Эти устройства широко используются в мире для прецизионной очистки различных деталей, начиная с шурупов и подшипников и заканчивая ортопедическими имплантами, печатными платами и инжекторными форсунками.

Установка парового обезжиривания компании Reibesam. Этой технологии будет посвящена следующая статья.

Обезжириватель представляет собой открытую прямоугольную емкость с двумя рядами охлаждающих змеевиков, установленными сверху по периметру. До определенной высоты емкость поделена на две части, или ванны, заполненные летучим растворителем. В первой ванне растворитель нагревается снизу и кипит. Пары поднимаются на высоту первого ряда охлаждающих змеевиков, создавая ниже данного уровня зону насыщенного пара. Конденсат стекает вниз и через водоотделитель попадает в ванну для ополаскивания. Таким образом, в результате дистилляции в эту ванну попадает только свободный от загрязнений растворитель.

Схема устройства парового обезжиривателя.

Данные системы способны очищать тысячи деталей в смену, потребляя малое количество растворителя. При этом большую часть времени они либо полностью открыты, либо прикрыты горизонтально перемещающейся крышкой, когда не используются. Минимизация потерь растворителя в результате уноса осуществляется за счет вторичных охлаждающих змеевиков, работающих при температуре ниже 0°С.

Концепция погружного охлаждения в открытой ванне
Эта концепция базируется на предпосылке, что электронное оборудование может быть охлаждено погружением в полуоткрытую ванну, которые во многом схожа с паровым обезжиривателем, рассмотренным выше. Термин «полуоткрытая» означает, что ванна закрыта, когда не требуется доступ к оборудованию и в качестве примера подобной конструкции можно привести морозильный ларь для еды. Так же как и он, ванна работает при атмосферном давлении и не имеет специальных герметичных разъемов для подводимого и отводимого электричества.

В данной системе каждый сервер или узел подключен к объединительной панели на дне ванны (в отличие от задней стенки серверной стойки). Ванна частично заполнена летучей диэлектрической рабочей жидкостью.

Модель открытой погружной системы охлаждения.

Электрическая проводка ниже уровня жидкости заведена в канал, и выходит из него наверху емкости. Встроенный конденсатор паров охлаждается либо водопроводной водой, либо водой, используемой для комфортного отопления (да, есть такое понятие в США). Кроме того, пары могут пассивно течь в так называемую градирню с естественной тягой, отдавая тепло непосредственно наружному воздуху, без использования воды как промежуточного теплоносителя.

Проект Allied Control с фторкетоном 3М – двухфазное погружное охлаждение в открытой ванне.

Концепция имеет множество преимуществ по сравнению с традиционными системами жидкостного охлаждения. Основной принцип состоит в том, что пропадает надобность в большей части оборудования, обязательного для воздушного и жидкостного охлаждения, а соответственно и не рассматриваются вопросы, связанные с его установкой, надежностью и потребляемой мощностью. Плотность мощности и надежность системы очень высоки. Более того, данной технологии априори присуще противопожарные свойства. Конечно, в рамках данной модели следует рассмотреть и другие аспекты, например, потери рабочей жидкости в результате уноса. Но, так как они возникают в одном определенном месте, а не в бессчетном количестве разъемов, то легко могут быть посчитаны и снижены с помощью технических приемов, о которых мы расскажем далее.

Внутри ванн тепло от десятков серверов вызывает кипение жидкости Novec. Её пары конденсируются на охлаждающем змеевике и возвращаются в систему.

Тепловая эффективность
Тепловая эффективность системы складывается их двух составляющих. Первое определяется конструкцией печатной платы и количественно выражается в разнице температур между активным слоем в чипе процессора, как основного элемента, который требуется охладить, и температурой рабочей жидкости. Второе составляющее определяется разницей температур между рабочей жидкостью и подводимой водой. При этом под температурой рабочей жидкости мы подразумеваем температуру её кипения при атмосферном давлении.

Процессор в его типичной конфигурации в виде чипа, подложки и теплораспределительной крышки со встроенным радиатором почти идеально подходит для пассивной системы погружного охлаждения. В большинстве случаев требуется лишь нанесение 100-микронного слоя пористого металлического покрытия, которое улучшает теплоотдачу при кипении. Данные покрытия обеспечивают коэффициент теплопередачи > 10 Вт/cм2*К при тепловом потоке 30 Вт/cм2. Если внедрить операцию по нанесению покрытия уже на этапе производства процессора, то пропадет необходимость во вторичном термоинтерфейсе, обычно используемом в многих схемах жидкостного охлаждения.

Модель погружной 2-х фазной системы охлаждения 3М.

Следующим моментом, который стоит рассмотреть, будет оценка того, какую максимальную выделяемую мощность может охладить данная система. В одном из исследований авторы предполагают, что требуется 100 см3 рабочей жидкости, чтобы охладить 1кВт-й модуль при условии, что известна и учтена его конфигурация, то есть плотность расположения компонентов.

Провели эксперименты
Для эксперимента собрали модельную печатную плату с 20-ю тепловыделяющими керамическими элементами размерами 19*19 мм и мощностью 200 Вт каждый. При этом, с одной стороны к ним на эпоксидный клей крепится медный радиатор размером 30*30*3 мм, с нанесенным с противоположной стороны тем самым покрытием, увеличивающим теплопередачу при кипении. Термопары в рабочей жидкости и в каждом из элементов позволяют подсчитать индивидуальное тепловое сопротивление и убедиться, что элементы не переходят в режим пленочного кипения. Далее эту модельную печатную плату погружают в узкую вертикальную емкость той же формы с зазорами 4 и 7 мм между кипящей поверхностью и стенкой.

Кипение Novec на криптоферме.

В ходе эксперимента было показано, что данная конфигурация способна отводить 4 кВт тепла (200 Вт с каждого элемента) через 4 мм зазор при атмосферном давлении, если в качестве рабочей жидкости залит гидрофторэфир – С3F7OCh4. При этом 4 кВт эквивалентно тепловому потоку в 11,7 Вт/cм2 против потока в 1,7 Вт/cм2, наблюдаемом в суперкомпьютере Cray X1E при охлаждении распылением! Результаты эксперимента позволяют предположить, что значение в 1 кВт отводимой теплоты на 100 см3 рабочей жидкости определенно достижимы. Также значительно снижается количество используемых материалов и различного рода выбросы.

Химия рабочих жидкостей
В таблице ниже представлены свойства одного гидрофторэфира и двух фторкетонов. Они обладают необходимыми теплофизическими характеристиками, являются безопасными и совместимыми с различными материалами и были протестированы в открытой погружной системе охлаждения. Заметьте, диэлектрические характеристики фторкетонов схожи с аналогичными свойствами перфторуглерода С6F14, который часто использовался в погружных системах охлаждения. В тоже время, гидрофторэфир имеет более высокую диэлектрическую постоянную и более низкое сопротивление, что может ограничить его использование в некоторых случаях. Первый из представленных фторкетонов со значением потенциала глобального потепления всего лишь в 1, на сегодняшний день широко используется в мире как пожаротушаший агент.
Свойство Рабочая жидкость
Молекулярная формула С6F14 C6F9OH5 C6F12O C7F14O
Тип ПФУ (перфторуглерод) ГФЭ (гидрофторэфир) ФК (фторкетон) ФК (фторкетон)
Ткипения, °С 56 76 49 74
Тзамерзания, °С < -100 < -100 < -100 < -100
Твспышки, °С нет нет нет нет
σ, мН/м 12 13,6 10,8 12,3
k, Вт/м*К 0,057 0,068 0,059 ~ 0,06
Сжид, Дж/кг*К 1050 1220 1103 1130
ρ, кг/м3 1680 1420 1600 1670
ν, сСт 0,4 0,41 0,4 0,52
Рнасыщ. пара при 25°С, кПа 30,9 15,7 40,4 15,7
Рнасыщ. пара при 100°С, кПа 350 206 441 228
Удельное сопротивление, ГОм*м 1000000 0,1 10000 10000
Диэлектрическая постоянная 1,76 7,3 1,84 1,85
Потенциал глобального потепления 9300 55 1 1
Среднесменная ПДК, ppm Не определена 200 150 150
Экономичность системы с точки зрения потерь рабочей жидкости
Действительно, это главный фактор, влияющий на жизнеспособность представленной системы. Существую формулы для подсчета потерь жидкости во время заполнения ёмкости, пуска и работы. Они позволяют сделать вывод, что наиболее эффективной мерой для уменьшения потерь в результате уноса паров будет создание такой конструкции, в которой восходящие пары будут улавливаться с помощью вторичного охлаждающего змеевика, который автоматически включается, когда температура системы превысит заданную допустимую температуру.

В этих стеллажах находятся платы ASIC для майнинга, погруженные в жидкости Novec (установка находится в Гонконге).

Результаты
В ходе описанных выше экспериментов было показано, что при использовании коммерчески доступного фторкетона с температурой кипения 49°С в открытой ванне и потоке воды в 15 галлон (что примерно равно 3,785 *15 = 56,8 литра) в минуту, температура в активном слое чипа процессора не будет превышать 60°С. При этом достаточно использовать воду с температурой 28°С.

Если же допустимо повышение температуры в активном слое процессора до 83°С, и при это объемный поток воды достигнет 30 галлонов в минуту, то можно использовать воду для первичных змеевиков с температурой уже 62°С.

Плотность мощности, которую способна охладить емкость, равно 130 кВт/м2, что значительно выше предела в 52 кВт/м2, типичного для стоек с воздушным или гибридным охлаждением. При переходе к масштабу серверной с полностью жидкостной системой охлаждения подобного типа мы получаем 25 кВт/м2 против 2,2 кВт/м2 для серверной с воздушным охлаждением.

Кроме того, данная система значительно экономит место, так как не требуется устанавливать дополнительное оборудование, обязательное для воздушной системы охлаждения. Отводимое тепло можно использовать для отопления зданий, обогрева теплиц и других объектов.

Практическая реализация
Пример реализации новой концепции охлаждения можно посмотреть здесь.
Где еще можно узнать информацию?
На нашем сайте.
Где можно купить?
Звоните нам по многоканальному телефону +7 495 784 7474. Задавайте вопросы в комментариях, мы на все постараемся ответить!
У вас есть еще что-нибудь почитать?
Конечно! » Сухая вода Novec 1230 для защиты серверных и не только » Как безопасно читать Хабр на работе с помощью наших экранов защиты информации » Из спрея в пленку в один пшик. Paint Defender: защитная пленка на кузов автомобиля » Технология трассопоиска и электронной маркировки подземных инженерных коммуникаций. Часть 1

Если мы допустили какие-либо ошибки, пишите в ЛС, мы все оперативно поправим. Не забывайте, мы ошибку поправим, а ваш коммент останется висеть.

Спасибо за внимание, надеемся, статья для вас оказалась полезной!

Правовая информация

Наименования 3M и Novec являются зарегистрированными товарными знаками.

UPD: Спасибо за указание на биткоин-ферму WarP.

habr.com